. После встречи в Сан-Франциско мы сели в арендованный автомобиль, чтобы доехать до штаб-квартиры Google в городе Маунтин-Вью. У нас был с собой портативный GPS-навигатор, однако мы его не включили, поскольку посчитали, что и так знаем, как добраться до следующей точки путешествия.

На самом деле мы, конечно, не знали. Столкнувшись с эшеровским лабиринтом шоссе, съездов и улиц, мы начали плутать, раздражаясь все больше и больше от неспособности найти нужную дорогу. В тот момент, когда наша встреча в Google, весь проект по созданию этой книги и наши профессиональные отношения были уже на грани краха, Эрик достал свой телефон и попросил Siri показать, как добраться до шоссе 101 в направлении на юг. Телефон ответил моментально и безошибочно: экран превратился в карту, на которой были показаны наше местоположение и стрелки, направлявшие на нужную нам развилку.

Конечно, мы могли бы включить наш портативный GPS-навигатор и подождать, пока он создаст план нашего маршрута, но нам не хотелось обмениваться информацией таким образом. Мы хотели задать вопрос, а затем услышать и увидеть ответ (в форме карты). Siri смогла пообщаться с нами именно на том языке, на котором мы хотели. Созданный в 2004 году обзор всех исследований в области автоматического распознавания речи (важнейшей части обработки естественного языка) за последнюю половину столетия начинался с признания о том, что «распознавание машинами речи на том же уровне, на котором это делают люди, представляется нам труднодостижимой целью», однако менее чем через 10 лет все основные элементы этой цели уже были достигнуты. Apple и другие компании сделали технологию обработки естественного языка доступной для сотен миллионов людей через их мобильные телефоны.[29] По замечанию Тома Митчелла, возглавляющего кафедру машинного обучения в университете Карнеги – Меллон, «мы находимся в начале десятилетнего периода, в течение которого перейдем от компьютеров, которые неспособны понимать наш язык, к компьютерам, которые понимают его почти на том же уровне, что и мы».[30]

Цифровая беглость: за дело берется Вавилонская рыбка

Программы по обработке естественного языка еще далеки от совершенства, а компьютеры не так хороши в сложной коммуникации, как люди, однако дело стабильно идет на лад. А в таких областях, как перевод с одного языка на другой, уже были достигнуты серьезные достижения: хотя коммуникационные способности компьютеров не настолько глубоки, как у обычного человека, они намного шире.

Человек, говорящий более чем на одном языке, обычно способен перевести фразу с одного на другой с достаточно высокой точностью. С другой стороны, автоматические сервисы, хотя и производят некоторое впечатление, редко делают свою работу без ошибок. Даже если вы плохо владеете французским языком, то не исключено, что вы можете лучше справиться с переводом фразы Monty Python’s „Dirty Hungarian Phrasebook“ sketch is one of their funniest ones (Скетч „Монти Пайтон“ под названием „Сборник венгерских ругательств“ – один из самых смешных), чем Google Translate. Программа предложила вариант Sketch des Monty Python ‘Phrasebook sale hongrois’ est l’un desplus drôles les leurs. Хотя эта фраза и передает общий смысл, в ней имеются серьезные проблемы с грамматикой.

Скорее всего, вам не удастся столь же успешно перевести это (или любое другое) предложение на венгерский, арабский, китайский, русский, норвежский, малайский, идиш, суахили, эсперанто или любой другой из 63 языков, помимо французского, с которыми работает сервис Google Translate