Посему первый шаг к пониманию относительности таков: нужно принять, что любые утверждения о расположении объекта имеют смысл лишь тогда, когда оно определяется вместе с системой координат. Систему мы можем выбрать любую, но не можем говорить, что она правильнее остальных.
С этим пониманием мы вернемся в Цюрих 1914 года.
Эйнштейн садится в поезд в Цюрихе и отправляется в Берлин. Он покидает жену Милеву и двух детей, уезжая в новую жизнь, к собственной кузине, с которой позже сочетается браком. Представим себе, что поезд движется по прямой с постоянной скоростью 100 км/ч и что в какой-то момент этой поездки Эйнштейн поднимается на ноги, вытягивает вперед руку и бросает на пол сосиску.
Отсюда возникает два вопроса: как далеко упадет сосиска и почему он бросил свою жену? Сам Эйнштейн счел бы более увлекательным первый вопрос, так что на нем мы и остановимся.
Предположим, он поднял сосиску на высоту 1,5 метра над полом вагона. Она падает, как можно ожидать, к его обшарпанным ботинкам, строго под вытянутой рукой. Можно заключить, что сосиска пролетела точно полтора метра. Как мы только что видели, подобные утверждения имеют смысл, только когда мы договорились о системе координат. Здесь мы выберем систему координат Эйнштейна – интерьер вагона, и относительно нее сосиска пролетает полтора метра.
Можем ли мы избрать другую систему координат? Представим, что между рельсов сидит мышь и поезд как раз проносится над ее головой, когда Эйнштейн роняет свою сосиску. Какое расстояние пролетит сосиска, если мы примем за точку отсчета эту мышь?
Сосиска по-прежнему падает из руки Эйнштейна и приземляется у его ног. Но для мыши и Эйнштейн, и сосиска еще и проезжают мимо. За время от момента, когда Эйнштейн ее бросил, до момента, когда она коснулась пола, сосиска проехала какое-то расстояние по рельсам. Точка, где располагаются ноги Эйнштейна в момент, когда сосиска касается пола, находится дальше по дороге, чем точка, где располагалась его рука в момент, когда он бросил сосиску. Сосиска по-прежнему летит на полтора метра вниз, с точки зрения мыши, но, кроме того, она пролетает какое-то расстояние в направлении движения поезда. Если нам вздумается измерить расстояние, которое сосиска пролетает между рукой и полом с точки зрения мыши, траектория полета будет не вертикалью, а наклонной линией, а значит, сосиска пролетит больше полутора метров.
Этот вывод с непривычки ошеломляет. Расстояние, преодоленное сосиской, меняется в зависимости от системы координат. С точки зрения мыши сосиска летит дальше, чем с точки зрения Эйнштейна. А выбрать «более правильную» систему координат, как мы убедились, невозможно. И если так, что определенного способны мы сказать о расстоянии? Нам остается только отметить, что сосиска пролетает некоторое расстояние, зависящее от системы координат, и это расстояние может оказаться разным, если мы продолжим измерять его в новых координатных моделях.
И это лишь начало наших трудностей. Как долго продолжается падение сосиски? Мы можем предположить, что сосиска, которая летит больше полутора метров, будет падать дольше, чем та, которая пролетает ровно полтора. И это приводит нас к тревожному выводу о том, что падение сосиски для Эйнштейна происходит быстрее, чем для железнодорожной мыши.
Мы живем, постоянно имея под ногами твердую почву в качестве фиксированного начала координат, и потому думаем, будто где-то постоянно тикает некое незыблемое универсальное время. Представьте себе уличную толпу, текущую через Вестминстерский мост в Лондоне, здание Парламента и циферблат Биг-Бена над ними. Башенные часы парят над морем пиджаков, и жизни, протекающие внизу, никак не влияют на безукоризненно мерный ход стрелок. Вот приблизительно так мы и представляем себе феномен времени. Оно выше нас, и на него никак нельзя воздействовать. Однако Эйнштейн увидел, что время устроено иначе. Как и пространство, оно бывает разным в зависимости от обстоятельств.