Работа Керста была повторена, хотя и не сразу, в нескольких лабораториях, в том числе и в СССР, и бетатрон вскоре стал надёжным и простым источником тормозного излучения, используемым в физики фотоядерных реакций и в технике. Однако главный недостаток циклотрона – небольшое ускоряющее поле, почти неизбежно следующий из нерезонансного характера ускорения, он и определял максимальную энергию на уровне 100 МэВ, когда же крупнейший бетатрон Иллинойского университета в США давал энергию 300 МэВ. Принципиальный характер этого ограничения связан с магнитотормозным или точнее синхротронным излучением частиц, двигающихся по окружности в самой вакуумной камере.
Теория синхротронного излучения, развитая в начале 40-х годов и хорошо подтверждённая экспериментально, указывала на неизбежное возрастание с энергией радиационных потерь, которые не могли быть восполнены относительно малым ускоряющим полем бетатрона. Таким образом, в начале 40-х годов сложилась внешне тупиковая ситуация: казалось, что резонансные методы достигли своего потолка, связанного с релятивистскими эффектами, а нерезонансные сталкивались с непреодолимыми техническими трудностями. В то же время переход в диапазон энергий порядка сотен МэВ был необходим в связи с появлением новой отрасли науки – физики элементарных частиц и требованиями генерации недавно открытых мезонов, когда же энергия покоя μ-мезона составляет 106 МэВ, а π-мезона целых 140 МэВ. Новый качественный этап в истории ускорителей связан с именем В. И. Векслера, работавшего тогда в ФИАН имени П. Н. Лебедева.
В 1944 году В. И. Векслер сформулировал свой знаменитый принцип автофазировки, согласно которому резонансное ускорение может быть продлено до сколь угодно больших энергий при весьма умеренных требованиях к параметрам ускоряющего поля. Этот принцип независимо был открыт в США Э. Мак-Милланом в 1945 году. Интересно отметить, что принцип автофазировки использует те самые эффекты зависимости частоты обращения от энергии, которые казались препятствием для повышения энергии частиц в циклотроне. Кроме того, применение основной идеи В. И. Векслера оказалось необходимым для более глубокого понимания работы и линейного резонансного ускорителя, а впоследствии и ряда других физических приборов, где существенно взаимодействие между образуемой в системе электромагнитной волной и ускоряемыми заряжёнными частицами.
Таким образом представляется начальный этап развитие ускорительной техники, с началом собственного зарождения, разделения на несколько видов и образованием первым физико-математических теорий, которые уже нашли свою реализацию. В дальнейшем в при помощи 2 дополнительных тем по истории ускорительной техники будет полностью рассмотрен вопрос о последующих проведённых работах до сегодняшнего дня, после чего можно будет переходить непосредственно к описанию конструкции самих ускорителей и их математического аппарата.
Использованная литература
1. Алиев И. Х., Шарофутдинов Ф. М. Использование ускорителей и явлений столкновения элементарных частиц с энергией высокого порядка для генерации электрической энергии. Проект «Электрон». Монография. Издательские решения. Ридеро. 2021. – 594 с.
2. Алиев И. Х. Программное моделирование явлений ядерных реакций на основе технологии создания множества данных с использованием системы алгоритмов на языке С++. Проект «Ядро-ЭВМ». Монография. Издательские решения. Ридеро. 2022. – 156 с.
3. Алиев И. Х. Новые параметры по ядерным реакциям для осуществления на ускорителе заряженных частиц типа ЛЦУ-ЭПД-300. Проект «Электрон». Монография. Издательские решения. Ридеро. 2022. – 498 с.