22. Тартынов, Г. Н. Экспериментальная ядерная физика. Т. 3. Физика элементарных частиц: Учебник КПТ / Г. Н. Тартынов. – СПб.: Лань КПТ, 2016. – 432 c.

ПАРАМЕТРЫ ИСПОЛЬЗОВАНИЯ И ЧАСТНОЕ ОПИСАНИЕ ПРОЦЕССА СОЗДАНИЯ ФОТОЭЛЕКТРИЧЕСКИХ УСТРОЙСТВ НА ОСНОВЕ ТЕЛЛУРИДА КАДМИЯ

УДК 621.383

Мавлонов Пахлавон Иброхимович


Старший преподаватель кафедры «Естественных наук» факультета компьютерного инжиниринга Ферганского филиала Ташкентского Университета Информационных Технологий


Ферганский филиал Ташкентского Университета Информационных Технологий, Фергана, Узбекистан

Аннотация. Активность в области использования полупроводниковых материалов в области энергетических технологий на сегодняшний день открывает большое количество возможностей, что говорит о необходимости дальнейшего более активного развития и использования. Кроме того, стоит также обращать внимание и на применение большого количества различных материалов среди коих могут выделяться отдельные представители, резко повышающие общую эффективность всей полупроводниковой конструкции и находящиеся на данный момент в большем приоритете по подобному измерению в лице бинарных, тернарных и т. д. химический соединений.

Ключевые слова: теллурид кадмия, полупроводниковые элементы, фотоэлектрические устройства, эффективность, технология производства, индустриализация.

Annotation. Activity in the field of the use of semiconductor materials in the field of energy technologies today opens up a large number of opportunities, which indicates the need for further more active development and use. In addition, it is also worth paying attention to the use of a large number of different materials, among which individual representatives may stand out, dramatically increasing the overall efficiency of the entire semiconductor structure and are currently in greater priority for such a measurement in the face of binary, ternary, etc. chemical compounds.

Keywords: cadmium telluride, semiconductor elements, photovoltaic devices, efficiency, production technology, industrialization.

Фотоэлектрические элементы, как известно, основывающиеся на методе генерации электрической энергии благодаря малой энергии, которую необходимо прикладывать в лице того или иного излучения, действуют по законам фотоэлектрических явлений (частные уравнения) (1—2).




И прежде чем давать некоторые выводы относительно того или иного элемента, признаваемое как основное для создаваемого полупроводникового элемента, стоит рассмотреть настоящее химические соединение по самым различным его параметрам. В данном случае на роль такого соединения выходит теллурид кадмия (Рис. 1), являющееся бинарным соединением кадмия и теллура, а также считаемый полупроводником 2-а и 6-б группы с шириной запрещённой зоны при температурах в 300 К в 1,49 эВ.


Рис. 1. Кристалл теллурида кадмия


Применение этого элемента на данный момент действительно популярно при создании солнечных батарей, детекторов ионизирующего излучения и фотоприёмников, однако математическая база этих явлений всё также требуют рассмотрения. Этот материал при обычном своём состоянии является твёрдым с молярной массой в 240,01 г/моль и плотностью 5,85 г/см>3, обладает после своего образования температурой плавления 1092 градуса по Цельсию с кубической структурой или структурой сфалерита, также популярный в народе как цинковая обманка.

У образованного материала коэффициент линейного теплового расширения составляет 5,9*10>—6 1/К при достижении значения температур в 293 К. Модуль Юнга у такого материала достигает 52 Гпа с коэффициентом Пуассона 0,41. Ещё одним, для некоторых случаев благоприятных моментов является обстоятельство его прозрачности для инфракрасного излучения от 830 нм, однако отрицательным в случае необходимости детектирования подобного рода классов излучений. Необходимо отметить, что это излучение, зависимое от энергии, близкой к ширине запрещённой зоны материала в 1,5 эВ при 300 К, что и становится причиной его прозрачности для такого рода излучений, соответствующие 20 мкм.