Далее более вероятным является деление пучка на составные части, где потери составят гораздо меньше, чем было бы при «селекции пучка» с потерями на более чем 90%, а именно для делений потери будут всего 12%. Нанотрубки, сами по себе это образования напоминающие углеродные трубки, пропускающие заряд, но при этом отделённые между друг другом диэлектрическим слоем молекул.
Для образования заряда в такой системе к каждой трубке проводится вертикальная и горизонтальная линия передач, при замыкании которой именно данная ячейка заряжается. При расположении второй такой же системы напротив между ними возникает разность потенциалов, благодаря чему можно придать энергии в градиентном спектре, обратный входящему градиенту пучка, при этом потеряв всего 12% от общего количества зарядов, а соответственно и тока.
При этом важно отметить, что хоть и варьировать разности потенциалов в рамках для современного ускорителя в 1 кэВ не так уж и сложно, но и точность не бесконечна. При сохранении такого же соотношения напряжений для 20 МэВ, может быть достигнута точность до 0,04—0,05 эВ, что является шокирующим результатом.
Но данная технология на данный момент разрабатывается в теоретическом вопросе и не лишена минусов, для примера, такая система подходит для довольно малых пучков с токами в 1 нА и лишь в очень редких случаях до 1 мкА, но возможно нахождения решения с созданием множеств таких малых пучков, делимых в дальнейшем, но данный этап является началом нового исследования, ещё больше повышающего эффективность ускорительной техники и возможно, при реализации данной технологии на ускорителе заряженных частиц проекта «Электрон» станет возможно назвать данный ускоритель имеющий самую высокую моноэнергетичность пучка, а соответственно и самую высокую эффективность всех проводимых ядерных реакций на нём.
Использованная литература
1. Каримов Б. Х. Elektronika asoslari. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 176 с.
2. Алиев И. Х., Каримов Б. Х. Курс физики ускорителей заряженных частиц. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 203 с.
3. Алиев И. Х., Каримов Б. Х., Каримов Ш. Б., Юлдошалиев Д. К. Промышленные и альтернативные аэраторы на основе зелёной энергетики для рыбных водоёмов. Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 221 с.
4. Алиев И. Х., Бурнашев М. А. Ингенциальная математика. Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 149 с.
5. Алиев И. Х., Каримов Б. Х., Каримов Ш. Б., Юлдошалиев Д. К. Развитие технологии аэраторов на основе альтернативных источников энергии. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 141 с.
6. Алиев И. Х. Программное моделирование явлений ядерных реакций на основе технологии создания множества данных с использованием системы алгоритмов на языке С++. Проект «Ядро-ЭВМ». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 156 с.
7. Каримов Б. Х., Мирзамахмудов Т. М. Электроника асослари. Учебное пособие. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 184 с.
8. Алиев И. Х. Новые параметры по ядерным реакциям для осуществления на ускорителе заряженных частиц типа ЛЦУ-ЭПД-300. Проект «Электрон». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 498 с.
9. Алиев И. Х. Программное моделирование явлений ядерных реакций на основе технологий созданий множества данных с использованием системы алгоритмов на языке С++. Проект «Ядро-ЭВМ». Монография. – [б.м.]: Научная школа «Электрон», Издательские решения. Ридеро, 2022. – 498 с.