Неожиданно ученые обнаружили, что еще один ультразвуковой сигнал с той же частотой и фазой излучается кристаллом спустя семьдесят миллисекунд после прохождения основного импульса. Исследование показало, что громкость «эха» зависит от температуры кристалла и частоты ультразвука. Эффект максимален при 26 мегагерцах и исчезает при температуре выше 75 градусов Цельсия, но при более низких температурах он воспроизводился.
Акустическая причуда ниобата лития может быть связана с его весьма необычнымии крайнем полезными электрическими свойствами: при сжатии он создает электрическое поле. Электрические поля изменяют траекторию проходящего через него света. Поэтому вещество используется в оптоволоконных средствах коммуникации и в голографической памяти.
Каждый кристалл ниобата лития состоит из лоскутков так называемых сегнетоэлектрических доменов. Бризиль подозревает, что частота отложенного эхо, создаваемого кристаллом, связана с размером этих доменов, определяющих пригодность материала для различных целей.
Подобно тому, как магнитные материалы «запоминают» магнитное поле, сегнетоэлектрики в определенных условиях могут «запомнить» электрическое поле. Эта особенность широко используется при изготовлении электромагнитных детекторов и других устройств.
По мнению ученых, он тесно связан со свойствами доменов (областей с одинаковой электрической поляризацией) внутри кристалла и объясняется образованием и последующей релаксацией электрических зарядов вблизи границ доменов.
Эффект пока не нашел надежного теоретического объяснения и нуждается в перепроверке, но уже ясно, что его можно с успехом применять для контроля качества пластин ниобата лития.
Представляется, что ниобат лития хранит звуковую энергию временно. Как это происходит, пока не ясно, но исследователи и мы отмечаем, что звуковая волна сжимает вещество, через которое проходит. Это создает в кристалле электрические поля, которое двигает электрически заряженные атомы, которые содержит кристалл. Когда поступление звука извне прекращается, ионы возвращаются обратно, но не все в одном направлении – движение разделено доменами, определяющими границы, на которых направление изменяется.
По закону сохранение энергии при возвращении ионов они выделяют полученную энергию в виде отложенной акустической волны. Это заставляет каждый домен зазвучать. Более сильное эхо связано с частотой резонанса доменов, которая зависит от их размеров.
Предполагается, что величина эха зависит от концентрации доменов и что эффект можно будет использовать для определения качества кристаллов. Какова действительная природа эффекта, еще предстоит выяснить.
Быть может, камни действительно заговорят?
ЗАКЛЮЧЕНИЕ
В настоящей работе сделан обзор и обсуждёна фотовольтаическая, оптическая (фоторефрактивная) и звуковая память в кристаллах ниобата лития. Коэффициенты в кристаллахниобата лития порядка K = (2—3) ∙ 10>—9A∙см∙ (Вт)> -1.
Использование в голографической записи в LiNbO3: Fe. дает преимущества. В этом случае запись осуществляется фотовольтаическим эффектом (ФЭ) соответствующей фотовольтаическому току. Генерируемое фотонапряжение в кристаллах LiNbO3: Fe порядка
(10>3—10>5) В/см ответствен за оптическую память.
Ниобат лития широко применяется в голографии и запоминающих устройствах благодаря своим прекрасным сегнето- и пьезоэлектрическим свойствам. Подобно тому, как магнитные материалы «запоминают» магнитное поле, сегнетоэлектрик LiNbO3 в определенных условиях могут «запомнить» электрическое поле.
ЛИТЕРАТУРА
1. Рывкин. С. М. Фотоэлектрические явления в полупроводниках. М.: Физматгиз. 1963. 494С.