Рис.4. Блок схема измерителя влажности на полупроводниковых излучателях
Характерными особенностями измерителя влажности на полупроводниковых излучателях является высокая избирательность, чувствительность, точность и воспроизводимость измерений, а также возможность непрерывного неразрушающего контроля, бесконтактность и экспрессность анализа
Заключение
Для создания измерителя влажности на полупроводниковых излучателях определена оптимальная полоса поглощения, свободная от полосы поглощения мешающих компонентов l>1 = 1.94 мкм.
В оптоэлектронном устройстве использованы в качестве излучающего диода на опорной длине волне светодиоды на основе GaAlAsSb/GaInAsSb/ GaAlAsSb (2.2 мкм), а излучающего диода на измерительной длине волны светодиоды на основе GaAlAsSb/GaInAsSb/GaAlAsSb (1.94 мкм).
Абсолютная погрешность результатов измерения содержания влаги составляло 0,5%.
Литература
1. Башкатов А. С., Мещерова Д. Н. «Основные тенденции развития оптоэлектронной техники до 2030 года,» Тезисы докладов Российской конференции и школы молодых ученых по актуальным проблемам полупроводниковой фотоэлектроники «Фотоника-2019», 2019, doi: 10.34077/rcsp2019—25. с.25—26.
2. Богданович М. В. «Измеритель содержания воды в нефти и нефтепродуктах на основе инфракрасных оптоэлектронных пар светодиод-фотодиод,» Журнал технической физики, 2017, doi: 10.21883/jtf.2017.02.44146.1791.
3. Машарипов Ш. М. Анализ современных методов и технических средств измерения влажности хлопковых материалов. // Приборы, 2016, №4., с 31—37.
4. Демьянченко М. А. Поглощение инфракрасного излучения в многослойной болометрической структуре с тонким металлическим поглотителем // Оптический журнал. – 2017. Том 84 – С. 48 – 56.
5. Rakovics V., Именков А. Н., Шерстнев В. В., Серебренникова О. Ю., Ильинская Н. Д., Яковлев Ю. П. «Мощные светодиоды на основе гетероструктур InGaAsP/InP,» fiz. i tekhnika poluprovodn., 2014.Т.48.с.1693—1697.
6. Артёмов В. Г., Волков А. А., Сысоев Н. Н. «Спектр поглощения воды как отражение диффузии зарядов // Известия Российской академии наук. Серия физическая, Известия Российской академии наук. Серия физическая. – 2018. – Т.82. – С. 67 – 71. doi: 10.7868/s0367676518010143.
УСТРОЙСТВА ДЛЯ ДИСТАНЦИОННОГО КОНТРОЛЯ ТЕМПЕРАТУРЫ НА ОСНОВЕ СВЕТОДИОДОВ (λ=2,0 мкм)
УДК 621.38
Кулдашов Оббозжон Хокимович
Доктор технических наук, профессор Научно-исследовательского института «Физики полупроводников и микроэлектроники» при Национальном Университете Узбекистана
Эргашев Дониёр Жамолиддин угли
Магистр 2 курса кафедры «Физики полупроводников и полимеров» физического факультета Национального Университета Узбекистана имени Мирзо Улугбека
Научно-исследовательский институт «Физики полупроводников и микроэлектроники» при Национальном университете Узбекистана
Аннотация. Предложено оптоэлектронное устройство для дистанционного контроля температуры малоразмерных объектов, которое может быть успешно использовано при исследовании температурных характеристик гелиотехнических установок.
Ключевые слова: температура, оптоэлектроника, датчик, контроль, светодиод, фотодиод, блок схема, конструкция.
Annotation. An optoelectronic device for remote temperature control of small-sized objects is proposed, which can be successfully used in the study of temperature characteristics of solar installations.
Keywords: temperature, optoelectronics, sensor, control, LED, photodiode, block diagram, design.
Устройство для дистанционного контроля температуры содержит объект контроля 1, который через модулятор 2 оптически связан с первым приемником излучения 3, выход которого через первый усилитель 4, первый амплитудный детектор 5 и первый интегратор 6, соединённый с первым входом устройства получения отношения сигналов 13, второй приемник излучения 7, выход которого через второй усилитель 8, второй амплитудный детектор 9 и второй интегратор 10 соединен со вторым входом устройства получения отношения сигналов 13 выход которого соединен с входом регистрирующего устройство 14, устройство управления источника колмированного излучения 12, вход которого соединен с выходом первого усилителя 4, а выход соединен с входом источника колмированного излучения 11, который через отражение от поверхности контролируемого объекта 1 оптически связан со вторым приемником излучения 7, электрическим двигателем 15, ротор, которого механически связан с осью вращения модулятора 2. На рис.4.13. показана конструкция модулятора. Здесь: 16-ось вращения модулятора; 17-модулирующие отверстия; 18-металлический диск. На рисунок 4.14 приведены временные диаграммы, поясняющие принцип работы предлагаемого устройства. На рис.1 приведена блок схема, а на рис 2 конструкция датчика.