Тот факт, что мужчины одержимы размером своего пениса, может, и не слишком неожиданный, но вот то, что вызывает наибольшую обеспокоенность у женщин, касаемо их тела, по данным Google, действительно вызывает удивление. Опираясь на эти новые данные, женским эквивалентом комплекса по поводу размера полового члена можно считать – выразительная пауза! – переживание о том, как пахнет их вагина. Женщины выполняют почти столько же поисков, выражая озабоченность по поводу своих гениталий, как и мужчины, беспокоящиеся о размере своих. Главной заботой женщины является ее запах и то, как она может его улучшить. Разумеется, я не знал этого, пока не обнаружил такие данные.
Иногда новые данные показывают культурные различия, о которых я даже не задумывался. Вот один пример: очень по-разному люди по всему миру реагируют на беременность своих жен. В Мексике топ-запросы «моя беременная жена» включают фразы «frases de amor para mi esposa embarazada» (признание в любви моей беременной жене) и «poemas para mi esposa embarazada»[17] (стихи для моей беременной жены). В Соединенных Штатах топ поисковых запросов состоит из следующих фраз: «моя жена беременна – и что теперь?» и «моя жена беременна – что мне делать?».
Но эта книга больше, чем подборка странных фактов или единичных исследований, хотя в ней будет приведено много подобной информации. Поскольку эта методика совершенно новая и только набирает обороты, я изложу здесь некоторые идеи о том, как это работает и что делает ее столь революционной. Я также допускаю, что есть пределы больших данных.
Эйфория в связи с потенциальной информационной революцией вряд ли уместна. Большинство тех, кто без ума от больших данных, просто фонтанирует идеями применения этого колоссального массива информации. Такая одержимость не нова. До Google, Amazon и Facebook, до появления самого понятия «большие данные» состоялась конференция в Далласе – «Большие и сложные массивы данных». Джерри Фридман[18], профессор статистики Стэнфордского университета и мой коллега по работе в Google, вспоминает, что на конференции 1977 года один уважаемый статистик заявил о том, что накопил невероятные, ошеломляющие пять гигабайт данных. Затем встал следующий выдающийся статистик и начал со слов: «Последний оратор говорил о гигабайтах. Это ничто. У меня – терабайты». Другими словами, акцент выступлений сместился на то, как много информации можно накопить, вместо того чтобы сделать упор на то, что с этими накопленными данными можно сделать или на какие вопросы можно найти ответы. «Тогда мне показалось забавным, – сказал Фридман, – что все надеялись поразить слушателей тем, насколько большой набор данных им удалось собрать. И это продолжается до сих пор».
Сегодня слишком много специалистов по анализу и обработке данных накопили большие массивы информации, но они дают нам слишком несущественные сведения, например, что баскетбольный клуб Knicks пользуется популярностью в Нью-Йорке. Слишком многие компании просто утонули в больших объемах данных. У них много терабайт информации, но мало своих идей. На мой взгляд, значение количества данных часто переоценивается. И это легко заметить, учитывая один небольшой, но очень существенный момент: чем важнее явление, тем меньше число наблюдений необходимо, чтобы его обнаружить. Вам достаточно один раз прикоснуться к горячей плите, чтобы понять, насколько это опасно. Но, возможно, вам придется тысячи раз пить кофе, чтобы понять, вызывает ли он у вас головную боль. Какой фактор серьезнее? Очевидно, что горячая плита, которая в силу интенсивности своего воздействия позволяет получить мгновенный результат при минимальном объеме данных.