быстрее, чтобы все время оставаться на заветной линии Земля – Луна: такое расположение будет поддерживать то самое «усиленное» притяжение к центру масс, благодаря которому спутник может лететь так быстро, чтобы все время оставаться за Луной, благодаря чему продолжать испытывать более сильное притяжение к центру масс… Эта «история про курицу и яйцо» выражается уравнениями, решение которых и нашли сначала Эйлер (1760), а потом Лагранж (1772): точка L>2, где все складывается так удачно, существует! На ней и основано решение проблемы ретрансляционного спутника – с небольшим уточнением, которое будет сделано чуть ниже.


Рис. 2.3. Точки Лагранжа L1 – L>5 в системе Земля – Луна


Другой интересный вариант – ЗСЛ, что означает спутник между Землей и Луной. На этот раз Земля и Луна тянут спутник в разные стороны: с точки зрения спутника это означает, что притяжение к центру масс слабее, чем если бы его притягивала одна только Земля. А это, в свою очередь, означает, что он летит по орбите выбранного радиуса медленнее, чем полетел бы в отсутствие Луны. Снова появляется надежда на успех, потому что «медленнее, чем обычно» – это как раз то, что требуется, ведь и спутник находится ближе к центру вращения, чем Луна. Мы снова ищем такую точку, где разность двух сил притяжения позволяет, находясь ближе к Земле, чем Луна, не обгонять Луну, а оставаться на линии Земля – Луна, из-за чего две силы притяжения продолжают вычитаться, из-за чего скорость движения по орбите меньше, чем если бы Луны не было, из-за чего тело все время остается на линии Земля – Луна, из-за чего оно испытывает настолько меньшую силу притяжения к центру, что движется ровно настолько медленнее, чтобы… Эта «самозацикливающаяся» фраза снова описывает уравнение. Математический факт с непосредственным приложением к космонавтике состоит в том, что решение у этого уравнения есть, и оно определяет единственную точку между Землей и Луной – точку L>1 на рис. 2.3. Это – подходящее место для космической базы: прекрасные условия радиосвязи и с Землей, и с Луной плюс определенные удобства путешествия к обоим телам. Это, собственно говоря, перевалочная точка: имея целью Луну, но долетев с Земли сначала на L>1, мы дополнительно потратимся на эту «остановку» очень незначительно. Поэтому отсылать, например, грузы в L>1 и хранить их там до момента, когда они понадобятся на Луне, можно практически без лишних затрат топлива по сравнению с прямой доставкой, но имея при этом преимущество в логистике.

L>1 – перевалочная точка

Наконец, вариант СЗЛ означает, что спутник находится с противоположной стороны от Земли, чем Луна. И Земля, и Луна притягивают его в сторону центра масс системы Земля – Луна, т. е. в сторону центра вращения; притяжение Луны при этом сказывается слабо из-за большого расстояния до нее, но все же немного добавляет к притяжению в сторону центра масс (и главное – не утягивает спутник куда-то в сторону). Опять-таки требуется решить уравнение, говорящее, что совместное притяжение Земли и Луны позволяет обращаться вокруг Земли синхронно с Луной; этим однозначно определяется расстояние от центра масс (а потому и от центра Земли). Это точка L>3 на рис. 2.3. Она оказывается совсем немного дальше от центра масс (примерно в 1,017 раза дальше), чем Луна, но немного ближе к центру Земли, чем расстояние от него до Луны.

Разумеется, точки Лагранжа имеются не только в системе Земля – Луна. Неважно, как называются два массивных тела, – математика одна и та же, только относительные расстояния от центра до L>1, L>2 и L>3 несколько различаются в зависимости от соотношения масс двух больших тел. В системе Солнце – Земля практически важны две точки Лагранжа: уже знакомая нам