Вернемся ещё раз к аксиомам неизменности фигур. Обычно ни геометр, ни математик не говорят про указанные выше аксиомы абсолютности единицы и системы координат. Почему? Да потому, что они считают их само собой разумеющимися (скрытые аксиомы). Но если геометра или математика «допросить с пристрастием», то они подтвердят эти аксиомы. Эти аксиомы и гарантируют свойство измеряемости любых величин, входящих в их рассуждения и формулы. И я имею в виду математика и геометра – материалистов, то есть таких субъектов, которые начинают свою науку с рассмотрения экспериментальных фактов, а не от «чистой мысли». Для материалиста (геометра и математика) экспериментальными фактами являются действительно выполненные в пространстве обоснованные построения любой геометрической фигуры, и результаты действительно выполненного измерения элементов этой фигуры. Если нет ни построений, ни измерений, то нет и экспериментальных фактов, и отталкиваться придется не от них, а от «чистой мысли о чем-то». А эта «мысль о чем-то» может оказаться ложной. Но именно так и поступают геометры и математики идеалисты, когда, например, создают неевклидовы геометрии. В этих геометриях нет действительно выполненных построений и измерений, и идеалисты (геометры и математики) отталкиваются только от мысли о том, что они якобы существуют, чего на самом деле не так. Замечу, что выделенные выше жирным курсивом рассуждения, математик и геометр обязаны провести только один раз. Почему? Потому, что во всех дальнейших рассуждениях они должны будут всегда помнить об этих, ранее проведенных рассуждениях. Эти-то рассуждения и будут у геометра и математика «скрытыми» аксиомами. К сожалению, про эти «скрытые» аксиомы в процессе длительных рассуждений и обучения, многие часто забывают. И среди таких забывчивых субъектов у нас имеются не только релятивисты (физики), но и некоторые геометры и математики. Приведу пример. Релятивисты, разработчики общей теории относительности, часто говорят о том, что пространство искривлено. Но, ни геометр, ни математик не только не возражают против этого утверждения, а даже наоборот, помогают релятивистам оформлять идею искривления пространства в математической форме. Как это понимать? И что на деле означает идея искривления пространства? Эта идея на деле означает, что теперь единица измерения длины становится не абсолютной, а относительной! В самом деле, теперь единица не является отрезком евклидовой прямой, а является кусочком кривой (например, частью дуги окружности). И кривизна такой «единицы» не определена. Эта кривизна может быть какой угодно. Ни в природе, ни в науке нет критериев, которые бы давали ответ на вопрос: «Почему кривизна единицы должна равняться, например, 0,1, а не 0,4»? Но это ещё не все! Чтобы измерить кривизну единицы, потребуется измерить её радиус кривизны. А радиус кривизны есть отрезок евклидовой прямой. И для его измерения потребуется евклидова, «прямая» единица. Таким образом, введение «кривой» единицы приведет к порочному кругу в процедуре измерений. Измерения с помощью такой, «кривой» единицы потеряют всякий смысл. Кроме того у математика числа станут «кривыми»! В самом деле. Теперь каждому числу у математика будет соответствовать не отрезок евклидовой прямой, а цепочка кусочков некоторой кривой. Мы сможем восстановить возможность проводить измерения, восстановив абсолютность единицы длины, для чего нужно вернуться в евклидово (неискривленное) пространство.