Пусть, как и прежде, имеется с десяток геометров, каждый из которых предварительно измерил один и тот же отрезок, одними и тем же единицами и, как и следовало ожидать, получил один и тот же (объективный) результат измерения (L). Пусть теперь этот отрезок двигается относительно геометров, а сами геометры двигаются ещё и относительно друг друга. Эта ситуация совершенно тождественно определяется и так: отрезок (объект) – неподвижен, а геометры (субъекты) двигаются относительно него (отрезка) с разными скоростями. Что произойдет, если среди геометров окажутся релятивисты и не релятивисты? У не релятивистов не будет проблем с измерением. У них есть аксиома неизменности фигур и при их движении. Поэтому у не релятивистов результат измерения будет одинаков для всех (объективен), однозначен, непротиворечив, и тот же самый (L). А вот что будет происходить с измерением у релятивистов? Да ничего хорошего. Объект – отрезок длиной L, уже построенный и, значит объективно существующий, должен пытаться менять свои размеры, согласно требованиям релятивиста (субъекта)? А у всех релятивистов требования различны, они же имеют несчастье двигаться с разными скоростями. И как только объект (отрезок) попытается удовлетворить одновременно все эти различные требования, его длина станет неопределенной, а измерение его длины превратится в бессмыслицу. На самом же деле, объект (отрезок) и не подумает «плясать под дудку» релятивиста. Он останется таким, какой он есть, длиной L. Как и прежде, найдется геометр, который скажет: «Мы создаем объективную науку, в которой измерения также объективны. Поэтому аксиома неизменности остается в силе и тогда, когда геометр и объект двигаются относительно друг друга. Релятивистам только кажется, что отрезок должен менять длину со скоростью. И это «кажется» появляется в его голове вместе с идеями релятивизма. Все мы знаем, что надо делать, когда что-то кажется. Надо или креститься или расстаться с релятивизмом». Итак, релятивизму нет места в объективной науке, если он полагает, что длина отрезка обязана изменяться со скоростью. Однако эта идея занимает в субъективной науке, каковой является, так называемая специальная теория относительности, весьма почетное место.

5. Измерение скорости и релятивизм

В этом пункте я покажу, что при измерении скорости мы также должны опираться на аксиому неизменности фигур геометра, при любых обстоятельствах, если мы хотим что-то измерять. Согласно определению, скорость V входит в фундаментальное соотношение L=Vt, где t – время движения материальной точки со скоростью V вдоль отрезка длиной L. Перед началом измерения скорости, мы обязаны иметь часы, и пусть мы их имеем. Тогда поделив длину заранее измеренного отрезка L (путь пройденный точкой) на измеренное часами время её движения мы и узнаем (то есть измерим) скорость точки. Но что мы понимаем под словами «заранее измеренный отрезок L»? Это значит, что отрезок измеряется геометром, или физиком, который точно следует инструкциям геометра. Но у геометра есть аксиома неизменности отрезка, поэтому и у физика она также должна быть. А потому результат измерения скорости получится у всех субъектов одинаковым (объективным), так как у всех субъектов и часы одинаковы (объективны). Более того, этот результат будет однозначен и непротиворечив.

Что произойдет, если мы в этом измерении скорости забудем про аксиому неизменности? И введем, например, утверждение: длина отрезка зависит от скорости. Ситуация с измерением скорости станет неразрешимой. В самом деле. Как только точка начнет двигаться относительно отрезка, так тотчас и отрезок начнет двигаться относительно точки. И согласно уверениям релятивиста, тотчас изменится и его длина. Получается, что мы не успели ещё измерить время движения точки вдоль отрезка, а он уже стал короче, чем он был (когда его предварительно измеряли). И в результате такого «релятивистского измерения» мы измерим вовсе не скорость точки. А что мы измерим? Да все что угодно, но только не скорость. В самом деле. Чтобы измерить скорость надо сначала узнать, на сколько укоротится отрезок, когда точка начнет двигаться относительно отрезка, а отрезок начнет двигаться относительно точки. А чтобы узнать, насколько укоротится отрезок, надо сначала узнать, с какой скоростью двигается точка (или отрезок относительно точки). То есть надо сначала знать ту самую скорость, которую мы и собирались измерять. Получается порочный круг: