Поэтому весьма интересным является применение фрактального исчисления в современной радиоэлектронике и радиотехнике, теоретические и экспериментальные результаты которого были получены А.А. Потаповым и коллективом под его руководством в Институте радиотехники и электроники им. В.А. Котельникова РАН, начиная с 80-х гг. XX в.[119], В итоге это привело к становлению и развитию нового фундаментального научного направления «Фрактальная радиофизика и фрактальная радиоэлектроника: Проектирование фрактальных радиосистем». Оказалось, что фракталы, дробные операторы и скейлинг представляют собой важный инструмент исследования, адекватным и к запросам практики, и к абстрактным конструкциям современной математики.
Сегодня стало ясно, что использование в радиофизике, радиотехнике, радиолокации, электронике и в современных информационных технологиях идей масштабной инвариантности («скейлинга») и разделов современного функционального анализа, связанных с теорией множеств, теорией дробной размерности, общей топологией, геометрической теорией меры и теорией динамических систем, открывают невиданные раньше возможности и новые перспективы в обработке многомерных сигналов и в родственных научных и технических областях. Существенным является то, что «наличие в уравнениях дробной производной современными исследователями интерпретируется как отражение особого свойства процесса/системы – память или немарковость…»[120]. Именно дробные операторы дали возможность создать такое новое фундаментальное направлении в науке, как фрактальная радиофизика и радиоэлектроника. Ведь использование теории фракталов, теории детерминированного хаоса, теории дробной меры и скейлинговых инвариантов позволило значительно повысить информативность радиосистем и устройств различного назначения и стать наиболее адекватным языком современной радиофизики[121]. Более того, следует отметить, что по отношению к современной науке теория фракталов выступает языком природы, так как «по содержанию контуры всех природных объектов суть динамические процессы, внезапно застывшие в физических формах и объединяющие в себе устойчивость и хаос»[122]. В философском плане это означает, что теория фракталов, а не геометрия правильных и гладких тел, является языком природы, выражая ее шероховатость и извилистость.
Именно практическое применение фрактальной геометрии позволяет создавать «интеллектуальные» материалы, которые делают невидимым предметы. В монографии В.С. Поликарпова и В.А. Обуховца отмечается, что «гносеологическую значимость имеют фрактальная электродинамика и фрактальные «интеллектуальные» материалы»[123]. В применении к авиации, морскому военному флоту, сухопутным боевым машинам это означает использование новых информационных технологий, позволяющих сделать невидимыми самолеты, что имеет немаловажное значение в военных действиях. Ведь здесь важную роль играют фрактальные антенны, которые являются неотъемлемой частью радиосистемы, носят широкополосный характер, что придает им чрезвычайную эффективность при разработке многочастотных радиолокационных и телекоммуникационных систем. Эта эффективность объясняется электродинамическими свойствами разнообразных фрактальных антенн (монополи и диполи с применением классической кривой Серпинского и дерева Кейли различного рода порядка итераций), что выявил анализ на основе алгоритмов численного решения гиперсингулярных интегральных уравнений.
Существенным является то, что размещение фрактальных элементов на корпусе объекта (например, самолета) может существенно исказить сигнатуру или радиолокационный портрет данного объекта. Такого рода искажение радиолокационного портрета используется в современной радиоэлектронной борьбе, когда применяются методы радиоэлектронного подавления информационных каналов систем управления оружием