Сервис способен не только оценивать уровень вовлеченности и удовлетворенности персонала, но и выявлять проблемы, связанные с выгоранием и плохим менеджментом. Например, алгоритм определяет, насколько заняты сотрудники в течение дня, кто недогружен, а кто перегружен работой. Сервисы способны не только действовать на опережение, информируя о ситуации лидеров, но и самостоятельно решать некоторые из проблем. Например, сервис Isaak[12] может предупредить руководителя, что он отправляет сотрудникам много писем в нерабочее время. Это заставляет их немедленно реагировать, что ведет к переутомлению и выгоранию. Анализируя тон письма, сервис может рекомендовать сотруднику исправить «недружелюбный» текст сообщения перед отправкой.

«Умные» сервисы помогают определять отношения между людьми, командами и отделами, анализируя организационные сети (ONA). Они выявляют неформальных лидеров и аутсайдеров, дают руководителям и HR-специалистам информацию о том, какие люди и команды сотрудничают продуктивно, а кому нужна помощь и поддержка.

Алгоритмы способны предсказывать отток персонала, выявляя сотрудников или команды, планирующие увольнение. Например, платформа Peakon[13] имеет алгоритм «прогнозирования увольнения», анализирующий общение сотрудников по ключевым словам, которые обычно используются перед собеседованием. Получив сведения, руководители или HR-менеджеры могут адаптировать свои стратегии удержания и найм, предотвратив тем самым увольнение ценного специалиста или проблему нехватки персонала.

Умные сервисы могут выявлять распространение негативных слухов или разглашение конфиденциальной информации. Такая практика уже существует в продажах и маркетинге. Сервисы сортируют неструктурированные отзывы клиентов на положительные и отрицательные. То же самое они способны делать и относительно оценки бренда работодателя.

Современные технологии анализируют информацию не только пассивно, но и рассылают открытые вопросы сотрудникам. Затем инструменты НЛП просматривают каждый ответ, анализируют настроение слов и предоставляют подробный отчет руководителям и HR-менеджерам.

Преимущества очевидны, но компаниям необходимо заботиться об уровне конфиденциальности сбора таких данных. Если сотрудники будут знать, что любая переписка и комментарии анализируются, будут ли они чувствовать себя в безопасности, будут ли откровенны? Очевидно, что любую технологию можно использовать как во вред, так и на пользу. Многие вспомнят пример, хорошо иллюстрирующий это: основатель компании Xsolla[14] Александр Агапитов 4 августа 2021 года опубликовал обращение об увольнении невовлеченных и малопродуктивных сотрудников на основании анализа их активности в рабочих чатах, почте, документах. Очевидно, что подобными действиями руководство наносит ущерб вовлеченности сотрудников и бренду работодателя. Поставьте себя на место сотрудников. Насколько комфортно им теперь будет работать в компании? Как действия руководства отразились на уровне их доверия к нему?

Поэтому в работе с опросами так важна конфиденциальность сбора и анализа данных, а также то, как руководство использует полученную информацию и работает с ней.

Вопрос конфиденциальности данных беспокоит не только пользователей, но и разработчиков таких сервисов. Например, сервис KeenCorp[15] не «собирает и не хранит в отчетах» информацию об отдельных сотрудниках. Вся информация, позволяющая идентифицировать личность, удаляется.

Машинный анализ текста все еще находится на стадии разработки. Пока нет уверенности в том, что он не регистрирует ложноположительные показания и улавливает все потенциальные угрозы. Но очевидно, что разработчики найдут решения и будут расширять области применения мониторинга настроений персонала, например, начнут анализировать не только письменную, но и устную речь и выражения лиц.