Главные направления использования водорода сегодня – в нефтепереработке и в химической промышленности (для производства различных товаров, в первую очередь – аммиака и метанола), рис. 1.3.

Таблица 1.2. Свойства водорода как энергоносителя



Энергетическое использование водорода, по данным ARENA, оценивается всего в 1–2% от общих объемов его потребления. Общий объем производства водорода в мире в настоящее время оценивается различными источниками в 55–65 млн тонн, причем совокупные среднегодовые темпы его роста за последние 20 лет невысоки – около 1,6%. Более 90% водорода производят на месте его потребления.

Резкое увеличение интереса к водороду как к горючему и энергоносителю, наблюдаемое в мире в последние десятилетия, определяется его следующими основными особенностями:

– запасы водорода практически не ограничены,

– водород – универсальный вид энергоресурса, он может использоваться в качестве горючего для производства электроэнергии в рабочих циклах различного типа и в качестве энергоносителя для транспортировки в газообразном, жидком и связанном состояниях,

– при помощи водорода возможна аккумуляция энергии,

– среди прочих видов органического топлива водород отличается наибольшей теплотворной способностью на единицу массы и наименьшим отрицательным воздействием на окружающую среду.

Для массового использования водорода в энергетике важно разработать экономически выгодные условия его получения и создать необходимую инфраструктуру, обеспечивающую доставку и хранение водорода. Он не является первичным источником энергии, как нефть или природный газ, но может быть использован в качестве энергоносителя.



Рис. 1.3. Направления использования водородa


В существующих реалиях «водородная энергетика», дополняющая традиционную энергетику, основанную на органическом топливе, рассматривается:

– как способ производства водорода с использованием не возобновляемых и возобновляемых источников энергии (органическое топливо, энергия АЭС, гидроэнергетика, энергия солнца, ветра, биомассы);

– надежное хранение и транспортировка водорода;

– использование водорода в энергетике, промышленности, на транспорте и в быту;

– обеспечение надежности и безопасности водородных энергетических систем.

Концепция «водородной энергетики» включает в себя решение целого комплекса проблем, рис.1.4.

Показанная технологическая цепочка водородной энергетики дает общее представление о масштабности и сложности решения проблемы.



Рис.1.4. Технологические цепочки водородной энергетики

Глава 2. Методы производства водорода

Водород можно получать на основе различных источников сырья, применяя для этого самые разнообразные технологии. Около 68% производимого в настоящее время водорода получают риформингом (конверсией) природного газа (метана, попутного нефтяного газа), 16% – риформингом нефти и жидких нефтепродуктов, 11% – газификацией угля и 5% – электролизом воды. В разработке находятся также новые способы получения водорода, включая биохимические методы, термохимическое расщепление воды энергией солнца, высокотемпературный электролиз и другие.

По способу производства водорода в Европейском Союзе принята классификация водорода по цвету, рис.2.1.

1. «Зеленый водород» – является самым экологичным, т. к. получают его с помощью электролиза, если электричество поступает от ВИЭ, таких как ветер, солнечная или гидроэнергия, выбросы СО2 отсутствуют.

2.«Желтый и оранжевый водород» – как и зеленый получают путем электролиза, однако, источником энергии являются атомные электростанции, энергия передается по сетям, выбросы СО2 отсутствуют, но метод не является абсолютно экологичным