. Способы можно перечислять почти бесконечно.

Но сколько и какие именно данные нам нужны? Один из ответов можно найти в рассказе аргентинского эссеиста Хорхе Луиса Борхеса, процитированном выше. В этом кратчайшем из рассказов Борхес рисует в воображении время, когда наука картографии стала настолько точной, что достаточной считалась только карта того же масштаба, что и сама империя. Пусть в эпоху интернета подробнейшие карты и могут уместиться на экране смартфона, действительно ли нам необходимо дублировать на них каждый камешек в асфальтовом покрытии, чтобы не разбиться на дороге?

В какой степени науке необходимо представить человеческое тело, чтобы понять его? Когда дело доходит до создания виртуального человека, должны ли мы, как Суарес Миранда, фиксировать все 7 000 000 000 000 000 000 000 000 000 (7 октиллионов) атомов в теле, не говоря уже обо всех деталях еще большего скопления простых частиц – вращающихся протонов, нейтронов и электронов, – которые составляют каждый из атомов? Решая, сколько данных нам нужно, чтобы сделать первый шаг к созданию цифрового двойника, сможем ли мы не утонуть в данных, избежать проклятия гильдии картографов?

Есть и другие вопросы, которые следует рассмотреть. Мы ищем данные, которые можно измерить где угодно, с использованием одного оборудования, в одинаковых условиях и по одним и тем же протоколам. Даже разные люди, использующие разное оборудование, должны прийти к схожим результатам в одинаковых условиях[34]. Нам необходимо собирать эти данные эффективным и современным способом: науку всегда подстегивает разработка новых инструментов, таких как микроскопы, секвенаторы и сканеры. Существуют также проблемы с курированием, хранением и защитой данных. И, конечно же, возникают практические вопросы по обработке всех этих данных: даже самый мощный компьютер, который появится в ближайшие десятилетия, не сможет смоделировать молекулярный уровень человеческого тела, который, по оценкам, состоит из примерно от 20 000 000 000 000 000 000 000 000 до 1 000 000 000 000 000 000 000 000 000 молекул.

Мерило себя

Интуитивно кажется разумным предположить, что, чтобы создать виртуальную версию, нам нужно знать о вас все, что только можно. Но измерить состояние всех молекулярных ингредиентов (не говоря уже обо всех составляющих вас атомах) – непростая задача. Сколько же данных будет достаточно? Хватит ли знания, что ваше тело состоит примерно из 20 000 генов? Или что в нем трудится замечательный коллектив из 37,2 триллиона клеток[35]? Или что ваш мозг весит 3 фунта и требует около 20 Вт энергии? Или что молекулы в вашем теле представляют собой различные смеси из примерно 60 атомов разных видов (элементов), включая 25 г магния, содержащегося в костях и мышцах, 1,6 мг кобальта, содержащегося в витамине B>12, 4 мг селена и 96 г хлора[36]? Или что нужно около 10>11 бит (100 000 000 000 бит), чтобы выразить сканирование вашего тела длиной до 1 мм? Или что понадобится 10>32 бит (единица, за которой следуют 32 нуля) информации, чтобы описать ваше тело с атомарным разрешением?

Данные не равнозначны. Особенно показательные данные включают «эмерджентные» свойства, которые отражают коллективное поведение большого числа микроскопических составляющих, где сумма качественно отличается от поведения частей. Свою первую книгу мы начали с австрийского физика Людвига Больцмана (1844–1906), продемонстрировавшего, как свойства жидкостей и газов возникают из поведения составляющих их молекул, что помогло открыть область, которую сегодня называют статистической механикой. Питер Слоот, который работает с Питером в Амстердамском университете, описывает эмерджентность с точки зрения взаимодействующих элементов, адаптирующихся к среде, которую сами помогают создать