.

Некоторые влиятельные фигуры слишком хорошо осведомлены об этом недостатке. Пол Нерс, директор Института Фрэнсиса Крика в Лондоне и бывший помощник редактора Journal of Theoretical Biology, рассказал нам, как ему надоело читать статьи, в которых умные технологии используются для проведения измерений, но «почти не приводят к каким-либо значимым выводам»[21]. В обзорной статье для журнала Nature он процитировал Сиднея Бреннера (1927–2019), своего старого друга и коллегу-нобелевца: «Мы тонем в море данных и жаждем знаний»[22]. Нерс жаловался, что важностью теории и принципами жизни пренебрегают в пользу зубрежки фактов, установок и информации. В биологии «есть идеи, так почему же мы о них не говорим?»

Однако биология, как и остальная наука, несомненно, подчиняется законам природы. Конечно, существуют области запретные по моральным и этическим соображениям, основанным на человеческих аргументах, но есть абсолютно все основания полагать, что мы должны быть в состоянии понять конкретный научный аспект того, как работает организм, и выразить это понимание в математической форме. Чтобы создать виртуального человека, биологии нужно выйти за рамки нынешнего использования теории для проведения апостериорных рационализаций после самих исследований и перейти к использованию теории для руководства экспериментами и прогнозирования.

Объединяя науку

Наука балканизирована. Идея разделения академических исследователей на племена восходит к Древней Греции, где жили Сократ (ок. 469–399 гг. до н. э.), его ученик Платон (ок. 428–347 гг. до н. э.) и, в свою очередь, ученик Платона Аристотель (384–322 гг. до н. э.)[23]. Однако через несколько десятилетий Тимон из Флиунта (ок. 320–230 гг. до н. э.) жаловался на ссоры «книжных монастырей» в Александрийском музее. К XVI в. Фрэнсис Бэкон (1561–1626) и другие философы оплакивали раскол человеческого знания.

К середине XIX в. дисциплинарные границы укоренились, каждая обладала своими обычаями, языком, потоками финансирования, учреждениями и практикой. В «Виртуальный ты» мы намерены показать, что сегодняшние исследования – больше, чем просто набор разрозненных усилий. Это грандиозная и взаимодополняющая мозаика данных, моделей, механизмов и технологий. Проступает общая картина того, как работает человеческое тело.

Поскольку не существует единственно верного восприятия человеческого тела, важна каждая точка зрения из каждой дисциплины. Они дополняют друг друга, и, если последовательно объединять их, могут возникнуть новые замечательные идеи. Если мы посмотрим, например, на великую революцию в молекулярной биологии, произошедшую в 1950-х гг., когда физики и химики занялись биологией, а биологи использовали методы, разработанные физиками, то увидим, что этот жизненно важный атомный взгляд на белки, ферменты и другие молекулы живых существ прекрасно дополняет существующие представления о наследственности и эволюции, создавая мощную унификацию знаний, известную как совпадение индуктивных обобщений.

Простая идея, лежащая в основе этой книги, заключается в том, что конвергенция многих отраслей науки – данных о пациентах, теории, алгоритмов, искусственного интеллекта и мощных компьютеров – ведет медицину в новом направлении, количественном и прогнозирующем. Мы покажем, как математика может охватить необычайный спектр процессов, происходящих в живых существах, взвесим разработки в области аппаратного и программного обеспечения, а затем покажем, как человеческое тело можно изобразить in silico, держа в руках цифровое зеркало, отражающее наше возможное будущее.