.

В 2011 г. созданный компанией International Business Machines (IBM) компьютер Watson, победивший в телевизионной игре Jeopardy!>42, продемонстрировал возможности подхода глубокого обучения, которые позволили ему оптимизировать свою стратегию методом проб и ошибок>43. С тех пор IBM осуществляла инвестиции в расширение мощности и функциональности данной технологии. Цель компании – создать «эквивалент вычислительной операционной системы для перспективного класса приложений искусственного интеллекта, работающих за счет больших данных»>44.

Недавний запуск компанией Google сети Deep Q показал достоинства усовершенствованной способности к самообучению. Компьютер настроили для прохождения старых игр компании Atari. Важно, что он не был запрограммирован, как реагировать на все возможные действия в игре. Лучше сказать, что он опирался на модели, которые позволяли ему «изучать» положения игры методом проб и ошибок, с течением времени улучшая свои результаты. Эта технология имитирует обучение человека за счет «изменения силы моделируемых нейронных связей на основе жизненного опыта. Сеть Google Brain, включающая 1 млн моделируемых нейронов и 1 млрд моделируемых нейронных связей, была в десять раз больше, чем любая прежняя глубокая нейронная сеть»>45.

Методы глубокого обучения были также задействованы в технологиях, связанных с повседневной жизнью. Умные алгоритмы всё активнее используются для осуществления автоматической поддержки клиентов, электронной коммерции, онлайнового общения и для создания интерактивного контента для интернет-пользователей. Уже в 2015 г. Европейская инспекция по защите данных (European Data Protection Supervisor) отметила, что «алгоритмы способны понимать и переводить языки, распознавать образы, писать новостные заметки и анализировать медицинские данные»>46. Например, компания Microsoft использовала данную технологию в своей операционной системе Windows Phone и в голосовом поиске Bing>47; Google, Toyota, Apple, Audi и Jaguar – при разработке «беспилотных» автомобилей>48; их также применяют при анализе фондовых рынков и в других операциях>49.

Большие данные повышают роль аналитики больших данных, и наоборот. Ценность больших данных была бы ниже, если бы компании не могли быстро анализировать цифровые данные и принимать соответствующие решения. Машинное обучение, в свою очередь, основано на доступе к большим наборам данных. Как отметила Европейская инспекция по защите данных, «компьютеры, использующие глубокое обучение, учатся выполнять задачи, перерабатывая большие наборы данных с использованием (в числе прочего) нейронных сетей, которые имитируют биологические нейронные сети мозга»>50. Способность алгоритмов к обучению увеличивается по мере того, как они обрабатывают большие количества релевантных данных. Считается, что простые алгоритмы, обрабатывающие большие массивы данных>51, в итоге должны превосходить по эффективности сложные алгоритмы с малым объемом данных>52. Это происходит, с одной стороны, благодаря способности алгоритмов обучаться методом проб и ошибок. Другой действующий фактор – выявление корреляций на основе наборов больших данных.

Таким образом, единственное, что необходимо компьютеру Watson, созданному IBM, и вообще искусственному интеллекту (ИИ) для «выполнения осмысленной работы» – это цифровые данные>53. Именно по этой причине компания IBM приобрела цифровые активы у Weather Co., собственника телеканала Weather Channel. Watson получил возможность анализировать накопленный объем погодных данных для совершенствования своих алгоритмов