Regardless of how an archverse can be described as a concept, an archverse is tremendously large, and at their scale, no human will ever describe their appearance. On this Wiki, the images used as representations of archverses are just that, representations. They are in no way supposed to show what an archverse looks like at all.
Naming system
As the name suggests, the naming of the metric -verse system relies on metric prefixes for -illions starting from mega-. Therefore, the names of the first archverses using the official SI prefixes from Megaverse are the Gigaverse, Teraverse, Petaverse,Exaverse, Zettaverse, Yottaverse, Ronnaverse and Quettaverse. Since there are no official prefixes after quetta-, the naming of archverses after that have to use unofficial prefixes; there were no prefixes after yotta- until 2022, so previously those archverses used unofficial prefixes too. Below is a list of the names of 90 archverses past Yottaverse. Currently, there is no accepted extended system that the metric hierarchy system uses, mainly because these -verses aren't useful as concepts. The most commonly used extensions for archverse naming use Jim Blowers' old system or Sbiis Saibian's system, though others have been used.
Universe
A universe can be interpreted as a -verse that comprises of a self-contained spacetime that can be of any shape (e.g. hyperspherical, flat, hyperbolic) and all of the contents within it. Contents of a universe can include, but are not limited to, planets, brown dwarfs, stars, galaxies, dark matter, dark energy, other forms of mass-energy, and even civilizations of entities. Spacetimes and their own contents disconnected from and causally independent from that of a given universe are typically called parallel to said universe. Finite or infinite sets of universes with some given relationship with one another are known as multiverses.
Universes can host restrictions on how objects within it can behave and interact with one another. These restrictions are known as the universe's laws of physics. Scientific progression by intelligent civilizations living within a universe involves the development of scientific theories that aim to accurately reflect physical relationships fundamental to universal laws.
Universes of finite age can start from an initial, generally extremely hot and dense, state known as a Big Bang from which it will "age" and expand from. Events that take place "before" a universe's Big Bang are generally not particularly meaningful to entities embedded within the universe as they are not part of the universe's spacetime. Depending on factors such as energy density, curvature, size, and topology, a universe can have many different expansion behaviours and end states. Examples of possible end states that can occur to an expanding universe include a Big Crunch, a Big Rip, and heat death.
Alternatively, a universe can refer to everything that can observed by a given reference entity. Our observable universe, for instance, is the set of all possible things within our own universe such that electromagnetic radiation potentially from said things has had enough time within the age of the universe to reach the planet Earth. Planet Earth contains the Berkeley cardinal. Galaxy Milky Way contains V=Ultimate-L. The Universe contains Von Neumann Universe.
Interpretations
Different interpretations of a multiverse containing multiple universes whether they are different structures often considered a multiverse by people or differing interpretations of a multiverse in different cosmologies can involve different interpretations of what a universe is and how they're structured. These interpretations can vary wildly in size and structure.