и функциональная магнитно-резонансная томография распахнули перед нейробиологами окно, через которое прекрасно виден головной мозг. В молекулярной биологии экспоненциально растут базы данных генов и белков. Даже «старые» дисциплины, например физика и астрономия, не стоят на месте благодаря потокам данных, льющимся из ускорителей частиц и цифрового исследования неба.

Однако от больших данных нет пользы, если их нельзя превратить в знание, и в мире слишком мало ученых, чтобы справиться с этой задачей. В свое время Эдвин Хаббл[11] открывал новые галактики, скрупулезно изучая фотографические пластинки, но можно ручаться, что таким способом не получилось бы найти полмиллиарда небесных тел, которые нам подарил проект Digital Sky Survey, – это было бы подобно ручному подсчету песчинок на пляже. Конечно, можно вручную написать правила, чтобы отличить галактики от звезд и шумов (например, птиц, самолетов или пролетающего мимо Супермена), но они будут не очень точными. Поэтому в проекте SKICAT, посвященном анализу и каталогизации изображений неба, был применен обучающийся алгоритм. Получив пластинки, где объектам уже были присвоены правильные категории, он разобрался, что характеризует каждую из них, а затем применил результаты ко всем необозначенным пластинкам. Эффективность превзошла все ожидания: алгоритм сумел классифицировать объекты настолько слабые, что человек не смог бы их выявить, и таких оказалось больше всего.

Благодаря большим данным и машинному обучению можно понять намного более сложные феномены, чем до появления этих факторов. В большинстве дисциплин ученые традиционно пользовались только очень скромными моделями, например линейной регрессией, где кривая, подобранная к данным, – всегда прямая линия. К сожалению (а может, и к счастью, потому что иначе жизнь была бы очень скучной – вообще говоря, никакой жизни бы и не было), большинство феноменов в мире нелинейны, и машинное обучение открывает перед нами огромный мир нелинейных моделей: это все равно что включить свет в комнате, которую до того освещала лишь Луна.

В биологии алгоритмы машинного обучения разбираются, где в молекуле ДНК расположены гены, какие фрагменты РНК вырезают при сплайсинге[12] перед синтезом белка, как белки принимают характерную для них форму и как заболевания влияют на экспрессию разных генов. Вместо того чтобы тестировать в лаборатории тысячи новых лекарств, обучающийся алгоритм спрогнозирует, будут ли они эффективны, и допустит до этапа тестирования только самые перспективные. Алгоритмы будут отсеивать молекулы, которые, скорее всего, вызовут неприятные побочные эффекты, например рак. Это позволит избежать дорогих ошибок, к примеру, когда лекарство запрещают только после начала испытаний на человеке.

Однако самый большой вызов – это собрать всю эту информацию в единое целое. Какие факторы усугубляют риск сердечных заболеваний и как они между собой взаимодействуют? Все, что было нужно Ньютону, – это три закона движения и один гравитации, однако одиночке открыть полную модель клетки, организма и общества не под силу. По мере роста объема знаний ученые все больше специализируются на какой-то области, но никто не способен собрать все части воедино, потому что элементов просто слишком много. Они сотрудничают друг с другом, но язык – очень медленное средство общения. Ученые пытаются быть в курсе других исследований, однако объем публикаций настолько велик, что они все больше и больше отстают, и зачастую повторить эксперимент проще, чем найти статью, в которой он описан. Машинное обучение и здесь приходит на помощь: оно просеивает литературу в поисках соответствующей информации, переводит специальный язык одной дисциплины на язык другой и даже находит связи, о которых ученые и не подозревали. Машинное обучение все больше напоминает гигантский хаб