Итак, начало этой книге было положено, когда четыре с половиной миллиарда лет тому назад где-то на окраине Млечного пути взорвалась очередная сверхновая звезда.
Разбросанное взрывом вещество смешалось с космической пылью. Затем постепенно, под действием гравитации, эта смесь стала стягиваться к новому центру тяжести, появление которого в спиральном рукаве нашей галактики было спровоцировано тем же взрывом Сверхновой. Чем больше сжималась туманность, тем быстрее она вращалась – как фигурист, который прижимает раскинутые руки, собираясь «в кучку», и тем самым резко увеличивает скорость своего вращения. Скорость вращения нашей туманности от практически нулевой в самом начале сжатия выросла до весьма ощутимых величин. И, в конце концов, центробежные силы уравновесили силы гравитации и сжатие остановилось. Настал момент так называемой ротационной неустойчивости. В это время туманность напоминала двояковыпуклую линзу. Диаметр этого газопылевого образования аккурат укладывался в нынешнюю орбиту Меркурия – 100 миллионов километров. В середине холодной туманной линзы было сгущение, позже превратившееся в Солнце, а на периферии – более-менее разреженный газ. По-другому такую туманность астрономы называют небулой. Температура в центре небулы была тогда всего ничего – несколько тысяч градусов. Обычный физический нагрев сжимающегося газа. Кто накачивал ручным насосом велосипедное колесо и собственной ладонью чувствовал нагрев сжимающегося газа, знает, о чем речь.
Мы сегодня знаем общее количество вещества в Солнечной системе и, исходя из этого, можем количественно оценить промежуток времени от момента взрыва сверхновой звезды (пора бы уже дать ей какое-нибудь имя, этой нашей звезде-прародительнице, из пепла которой мы состоим!) до момента наступления ротационной неустойчивости. Процесс этот, надо признаться, занял некоторое время. Правда, по астрономическим часам время совершенно ничтожное – миллион лет.
Эволюция звездной системы шла по экспоненте. Вообще, экспонента – общий закон для всех эволюционных процессов. Выглядит экспоненциальный процесс так: сначала все идет медленно-медленно, потом быстрее, быстрее, быстрее и, в конце концов, приобретает скорость взрыва. А после взрыва начинается новый этап медленного роста, но уже на качественно новом уровне: тогда растет уже нечто другое, порожденное взрывом.
Чтобы проиллюстрировать экспоненту для нашего случая, примем весь миллион лет сгущения межзвездного газа за один час. Поставим таймер и посмотрим. И увидим, что одна сотая доля всей массы, раскиданной взрывом сверхновой, сгустилась за 45 минут. За следующие 15 минут (без нескольких секунд) в центре сконденсировалась ровно половина газа, составлявшего будущую солнечную систему. А оставшаяся половина массы слетелась за несколько секунд до финального гонга. Вот вам экспонента.
Что же представлял собой этот самый газ, который сгустился до крутящейся приплюснутой туманности? Клёвую кашу из новеньких атомов, наработанных в ядерной топке сверхновой и потом раскиданных взрывом по межзвездному пространству! Там была вся таблица Менделеева. Были там и радиоактивные элементы – как долгоживущие, так и с периодом полураспада в сто тысяч или миллион лет. Сейчас их в нашей Солнечной системе уже нет – давно вымерли. А когда-то были и сыграли очень важную роль.
…Для тех, кто в танке и, к стыду своему, напрочь забыл, что такое изотопы и радиоактивные элементы, поясняю максимально просто, как для французов. Глянем в таблицу Менделеева. Что мы там увидим? Мы увидим массу всякой интересной всячины! Вот, например, элемент под № 6 – углерод, который обозначается буквой С. Номер элемента в периодической таблице – не просто цифирка в реестре. Она означает, что в ядре углерода 6 протонов. А вокруг них, соответственно, по своим орбитам вращаются 6 электронов. Атомный вес углерода 12 единиц. Это вес ядра. За единицу веса принят вес одного протона. Значит, помимо шести протонов, в ядре атома углерода есть еще шесть частиц без электрического заряда (12 – 6 = 6). Мы знаем, как они называются, – нейтроны. Вес нейтрона практически равен весу протона.