Мы можем сформулировать три основные причины успеха этой программы: серьезная и известная проблема, герой с увлекательной, по-человечески интересной историей и группа поддержки – целая каста эмоционально вовлеченных в процесс людей. Но я подозреваю, что существует и четвертая причина, не столь явная. Люди, не связанные с математикой, по многим объективным причинам редко слышат о новых достижениях в этой области, да и не так уж сильно интересуются этим. В газетах лишь изредка упоминается что-нибудь связанное с математикой, а если и упоминается, то лишь приводятся какие-то отрывочные или тривиальные факты. Наконец, действия и достижения математиков где-то там за кулисами не оказывают, на первый взгляд, никакого влияния на повседневную жизнь. А школьная математика зачастую предстает перед учащимися как уже закрытая книга, где на каждый вопрос есть готовый ответ. Школьникам обычно кажется, что ничего нового в математике днем с огнем не сыщешь.
Если смотреть под таким углом зрения, то главное в достижении Уайлса – не то, что Великая теорема Ферма была доказана, а то, что наконец-то в математике свершилось хоть что-то новое. Поскольку на поиск доказательства теоремы у ученых ушло больше 300 лет, многие зрители восприняли открытие Уайлса как первое существенное достижение в математике за весь этот период. Я не говорю, что все действительно именно так и решили. Понятно, что подобная позиция рассыпалась бы в прах при первом же очевидном вопросе вроде: «Почему правительство тратит немалые деньги на финансирование университетских математических исследований?» Но на подсознательном уровне все сочли, что это именно так, не задаваясь вопросами и не размышляя. Поэтому достижение Уайлса приобрело в глазах нематематиков еще большие масштабы.
Одна из целей этой книги – наглядно продемонстрировать всем, в том числе и неспециалистам, что математика сейчас на подъеме, а новые открытия в ней – совсем не редкость. Вы почти ничего об этом не слышите просто потому, что большая часть математических работ слишком сложна для неспециалистов, а средства массовой информации с опаской относятся к интеллектуалам и боятся публиковать что-либо сложнее «X-фактора». Кроме того, практическое приложение математики обычно скрыто от глаз потребителя, причем зачастую намеренно, чтобы не волновать его. «Что? Работа моего айфона построена на математических формулах? Но у меня же по математике всегда была пара! Как я буду входить в “Фейсбук”?»
Исторически новые достижения в математике часто следуют за открытиями в других областях знания. Исаак Ньютон, разработав законы механики и всемирного тяготения, которые описывают движение планет, не избавился разом от всех проблем в понимании устройства Солнечной системы. Наоборот, после этого перед математиками встал ряд новых вопросов: да, конечно, мы знаем законы, но что они подразумевают? В поисках ответов Ньютон придумал дифференциальное (интегральное) исчисление, но и у нового метода обнаружились ограничения. Зачастую он вместо ответа на вопрос просто дает иную его формулировку. Так, с его помощью некоторые задачи можно легко записать в виде специальной формулы, известной как дифференциальное уравнение. Решение этого уравнения и есть искомый ответ. Но это решение еще надо найти. Тем не менее дифференциальное исчисление послужило мощным стартом. Оно показало, что ответ в принципе возможен, и снабдило ученых эффективным методом его поиска. До сих пор, хотя прошло уже больше 300 лет, этот метод помогает математикам совершать крупные открытия.