…и при температуре где-то в 100 миллионов градусов (К) начинаются термоядерные реакции с участием гелия…

…происходит так называемая гелиевая вспышка – взрывоподобное начало горения гелия, то есть с выделением большого количества энергии из ядер гелия образуются ядра углерода и даже кислорода…

Возобновившиеся на новом уровне термоядерные реакции становятся причиной значительного расширения атмосферы звезды, звезда разрыхляется, энергии-то много выделяется и она становится гигантом, красным гигантом, точнее говоря…

Но горение гелия в среднемассивных звездах весьма нестабильно, так как в их недрах возникают сильнейшие термические пульсации, отчего такие звезды называются переменными или пульсирующими звездами…

…а механизм пульсации довольно прост: выделяющаяся при термоядерном синтезе углерода энергия разогревает внешние слои звезды, в результате чего ее блеск начинает расти и она раздается в объеме…

…но увеличение объема звезды, как бы странно это не звучало, приводит и к заметному ускорению охлаждения ее атмосферы, площадь-то охлаждения увеличивается…

…поэтому блеск звезды начинает уменьшаться, а пройдя некий максимальный уровень роста, объем звезды начинает сокращаться…

…сжатие же звезды, естественно, приводит к разогреву ее недр, а звезда заново начинает ярче сиять и снова расширяется…

Как долго такая карусель будет происходить со звездой? Считается, что этот период в бытие звезд может длиться до нескольких десятков миллионов лет…

…но однажды, при очередном сжатии, когда температура в очередной раз повышается, а от этого в термоядерных реакциях начинают участвовать новые слои гелия, происходит мощный взрыв, из-за которого атмосфера звезды сбрасывается, превращаясь в так называемую планетарную туманность…

…а в центре этой планетарной туманности появляется вырожденное оголенное ядро звезды, в котором термоядерные реакции прекращаются и оно, остывая, превращается в уже знакомый тебе вырожденный гелиевый белый карлик, если первоначальная масса звезды не превышала 0,85 солнечных масс…

…либо, если масса была больше 0,85 солнечных масс, в так называемый вырожденный углеродно-кислородный белый карлик, которого от дальнейшего сжатия избавляет давление вырожденного электронного газа…

– А что такое электронный газ? И как он может сдерживать материю в проэволюционировавших звездах от дальнейшего сжатия?

– Ну, представь себе атом, вернее, планетарную модель атома…

– Гм…

– В центре атома находится положительно заряженное ядро, состоящее из протонов и нейтронов…

…а вокруг ядра, на колоссальных для микромира расстояниях, движутся отрицательно заряженные электроны…

…и скорость их движения столь высока, а траектории столь причудливы, что предсказать, где будут находиться электроны в следующее мгновенье – невозможно…

…поэтому и принято считать, что ядра атомов окружены оболочками, электронными оболочками, в сферах которых в любое следующее мгновение могут появиться электроны…

– Брр…

– Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами, а незанятые электроны образуют так называемый электронный газ…

– Ау!

– На заключительных этапах эволюции звезд, масса которых колеблется в пределах от 0,85 до 3,5 солнечных масс, плотность материи в центральной части звезды становится настолько громадной, что электроны в атомах вынуждены покидать свои орбиты, либо же они не могут занять свои места вокруг атомных ядер…

…а это приводит к тому, что расстояния между соседними ядрами атомов, которые лишились этих электронных оболочек, начинают уменьшаться…