Так я познакомился с важнейшей характеристикой технологического уровня производства электронных приборов – процентом выхода годных. Борьба за его повышение шла и до сих пор идет на всех электронных заводах.

В данном случае речь идет о проценте выхода годных только на одной технологической операции, а их число для цветного кинескопа превышает 6000, и на каждой из них существует возможность брака. Поэтому работа технолога в электронном производстве считается ключевой.

Кафедра № 5 Московского химико-технологического института готовила именно технологов производства электронных приборов.

Нашей группе повезло: первая же практика проходила в производстве самого сложного прибора. На стеклянный экран кинескопа напыляли в вакууме тончайший слой алюминия – анод кинескопа, затем на экран осаждался люминофор, а в горловину впаивался электронный прожектор – катод кинескопа, и начинался продолжительный процесс откачки – создания вакуума в приборе.

К этому времени телевидение находилось в первом десятилетии своей истории, но развивалось стремительными темпами. На заводах, производящих кинескопы, их откачка шла на «железных дорогах» – 160 откачных комплексах, передвигающихся от одной позиции к другой. В самом конце «железной дороги» кинескоп загорался голубым светом, и проводилась его электрическая тренировка.

А в небогатых аудиториях корпуса физхимии продолжались лекции по самым разным направлениям электроники. Курсов было много. Они были непродолжительными, но давали представление о главных проблемах электронного производства. Вместе с базовыми знаниями начальных курсов по физической, неорганической, органической, коллоидной и другим химиям, по математике и физике будущие инженеры-технологи по специальности № 5 становились специалистами инженерного профиля, востребованными во всех, в том числе новых областях электроники.

Вряд ли дипломник любого другого советского ВУЗа, кроме МХТИ, мог бы, используя американские публикации, воспроизвести транзистор. Сусанне Мадоян помогли знания и навыки, полученные в МХТИ, и опыт ее руководителя А.В. Красилова, долгие годы разрабатывавшего в НИИ-160 полупроводниковые СВЧ диоды-детекторы радиолокационных сигналов.

Свою дипломную работу я делал в НИИ полупроводниковых диодов, носивших тогда, как и все научные, конструкторские и промышленные предприятия, номер. Это был НИИ-311. В 70-е годы всем надоевшие номера сменились на собственные имена, и НИИ-160 был назван «Истоком», а НИИ-311 – «Сапфиром». Тему дипломной работы подсказал Б.М. Царев: «Исследование долговечности катодно-подогревательного узла ЭВП».

Актуальность темы определялась в первую очередь расширением применения приемно-усилительных ламп в вычислительных и военных системах. Руководила моей дипломной работой Светлана Рычкова, жена секретаря парткома НИИ-311 Ростислава Рычкова.

Идея исследований была понятна. Основной причиной отказа ЭВП был катодно-подогревательный узел. <…> В результате химических реакций в твердых растворах с участием металлов вольфрама, молибдена, никеля и окислов алюминия, бария, стронция и кальция при температурах 800–1200 °С в вакууме происходили сложные химические, электролитические и диффузионные процессы. Именно эта многокомпонентная термически напряженная конструкция, испытывающая, кроме того, градиентные термоудары в практически различных составах остаточных газов, чаще всего и выходила из строя – перегорал подогреватель. Иногда происходил отказ катода, он терял эмиссию, и электронный прибор переставал работать по этой причине. В общем катодно-подогревательный узел ЭВП был, как и сердце живого организма, самой его важной и самой критичной деталью (органом) прибора (организма). Он определял все процессы, преобразовывал энергию внешних источников и обеспечивал передачу преобразованных потоков; при этом прибор совершал почти интеллектуальный процесс преобразования информации.