/C, но не делается никаких серьезных попыток понять как такой механизм мог привести к гиперболическому росту населения мира. Проблема устойчивости роста в них игнорируется.


3. В моделях третьего класса нет, по сути, ничего кроме математических уравнений, т. е. это голая математика (где нет решения проблемы устойчивости роста), единственное назначение которой дать полное согласие с «экспериментальными данными», т. е. с гиперболой Фёрстера.


К первому классу относится теория Капицы. Автор предлагает модель коллективного взаимодействия; разрабатывается, а затем отвергается целый ряд чисто умозрительных способов ее реализации. Сначала рассматривается «модель взаимодействия городов»: населенных пунктов с численностью K = 67 тыс. человек, затем модель распространения информации по схеме цепной реакции, и, наконец, в качестве причины, способной объяснить парадоксальную системность человечества, предлагается нелокальное (!) взаимодействие.

Автор честно отмечает нерешенность проблемы устойчивости роста в рамках своей модели. (В последней своей работе [9] С.П. Капица приходит к выводу, что причину аномального гиперболического роста искать вообще не нужно: вполне достаточно его «феноменологии»…)


Модель Коротаева служит хорошим примером гипотезы, в которой предлагается конкретный механизм роста, но не делается никаких серьезных попыток понять, как такой механизм мог работать в пространстве и во времени на территории Мир-системы.

И, наконец, последний член этого ряда – модели полностью оторванные от реальности и представляющие собой, по сути, какие-то бессмысленные математические игры. Примером такого «творчества» может служить работа С.В. Циреля[16], в которой гиперболический рост населения Земли представляется переходным между нулевым и экспоненциальным.

* * *

В многопричинной модели причины роста меняются со временем, они различны для разных стран, народов и регионов, численность населения которых в сумме составляет численность человечества. При этом считается, что рост населения мира процесс хотя и случайный, но направленный к определенной цели и на временах бо́льших, чем некоторое характерное время является гиперболическим.

Такое свойство растущей системы «все человечество в целом» достигать в реперных точках своего роста предустановленных значений численности и следовать во все времена одной и той же гиперболе демографического роста называется эквифинальностью. Именно оно обеспечивает выполнение в среднем закона квадратичного роста, который причинным законом в многопричинной модели уже не является, а представляет собой функциональную, непричинную (не ПОС) связь между численностью и скоростью ее роста.

Многопричинная модель равносильна модели третьего типа с постдетерминацией и поверить в такой механизм гиперболического роста, противоречащий всем существующим представлениям о росте численности популяции, – значит поверить в невероятное.

Причинные и непричинные законы

Для дальнейшего нам понадобится классификация законов по способу их детерминации. Законы по типу детерминации подразделяются на причинные и непричинные. Существуют два типа причинных (каузальных) законов: с преддетерминацией, когда время детерминации некоторого события предшествует времени его наступления, и с постдетерминацией, когда момент детерминации расположен позднее того момента времени, в который происходит это событие.

Во многих контекстах причинный закон отождествляется с законом, основанном на преддетерминации. Вместе с тем понятие закона с постдетерминацией, которая может быть также названа телеологической или целевой детерминацией, необходимо при описании целого ряда биологических, экономических, социальных, кибернетических объектов и систем.