Функция вознаграждения определяется с учетом специфики задачи и желаемых результатов. Например, в игре награды могут быть связаны с достижением определенного уровня или победой, в управлении роботами – с успешным выполнением задачи или избежанием препятствий, а в финансовых приложениях – с получением прибыли или минимизацией потерь. Функция вознаграждения может быть как простой и заранее заданной, так и сложной и зависящей от динамических условий среды.
Важно отметить, что мгновенные награды могут иметь долгосрочные последствия, и агент может выбирать действия с учетом не только текущей награды, но и их влияния на будущие возможности получения наград. Подход к оценке функции вознаграждения является ключевым аспектом в разработке успешных алгоритмов обучения с подкреплением, поскольку правильное определение наград может существенно повлиять на обучение агента и его способность принимать оптимальные решения в различных ситуациях.
4. Политика (Policy): Политика (Policy) в контексте марковского процесса принятия решений (MDP) представляет собой стратегию или правило, определяющее, какие действия должен совершать агент в каждом состоянии среды. Она является ключевым элементом алгоритмов обучения с подкреплением, поскольку определяет стратегию выбора действий, направленную на достижение целей агента и максимизацию его награды.
Политика может быть детерминированной или стохастической в зависимости от того, как она выбирает действия в каждом состоянии. В случае детерминированной политики агент всегда выбирает одно и то же действие для каждого конкретного состояния. Например, если агент находится в определенном состоянии, то он всегда выбирает одно и то же действие. В то время как стохастическая политика определяет вероятностное распределение над действиями в каждом состоянии, позволяя агенту принимать решения с учетом неопределенности или случайности в среде.
Политика может быть изменчивой и подверженной обучению, что позволяет агенту адаптировать свое поведение в соответствии с изменяющимися условиями среды или опытом, накопленным в процессе взаимодействия. Это особенно важно в задачах, где среда может быть динамичной или нестационарной, так как агент должен быстро реагировать на изменения и подстраивать свое поведение для достижения оптимальных результатов.
Определение эффективной политики является центральным вопросом в обучении с подкреплением, и разработка алгоритмов, способных находить оптимальные или приближенно оптимальные политики, является одной из основных задач исследования в этой области. Понимание и использование политик позволяет агентам эффективно и адаптивно взаимодействовать с окружающей средой и достигать своих целей в различных условиях.
5. Модель переходов (Transition Model): Модель переходов (Transition Model) в марковском процессе принятия решений (MDP) является средством описания динамики среды и определяет вероятности перехода между состояниями в результате выполнения определенного действия агентом. Это ключевой элемент, который позволяет агенту предсказывать, какая ситуация может возникнуть после выполнения определенного действия в текущем состоянии.
В явном виде модель переходов может быть представлена в виде функции, которая принимает на вход текущее состояние и выбранное действие, а затем возвращает вероятностное распределение или конкретные состояния, в которые агент может попасть. Например, в игре на шахматной доске модель переходов может определять, какие состояния могут возникнуть после каждого возможного хода фигур.
Однако в реальных задачах часто сложно или невозможно задать явную функцию переходов. В таких случаях модель переходов может быть обучена на основе опыта агента, используя данные о предыдущих взаимодействиях с окружающей средой. Например, в задаче управления роботом модель переходов может быть обучена на основе данных о движении робота и его реакции на внешние воздействия.