Больше 20 лет (1961—1985) все было хорошо. Последователи теории пишут автору письма со всех концов страны, рассказывают, как продвигается обучение, он всем обстоятельно отвечает. В газете «Пионерская правда» Генрих Саулович ведёт рубрику для детей. Некоторые его последователи начинают обучать элементам ТРИЗ школьников и даже дошкольников.

И вот появляется второе противоречие (в 1979 году ФП, в 1985 – ТП1 и ТП2).

И тут началось. Автор начинает переучивать старых специалистов (со стажем 20 лет в ТРИЗ) обновлённой методике. Именно эти, умудрённые «тризовским» опытом специалисты, труднее начинающих воспринимают новшество. При этом новички не ощущают никакого неудобства. В чём дело?

Одновременно в разных городах и весях продолжают эксплуатировать АРИЗ с одним техническим противоречием. Аргумент: «Понятнее, доступнее, привычнее». Продолжается обучение детей. Здесь тоже, тот же аргумент. Доказать, что детям лучше использовать одно техническое противоречие, а не два, пытается каждый, кому не лень.

Пару лет назад совершенно незнакомый мне студент из далёкого сибирского города попросил меня (по электронной почте) решить известную учебную задачку, а то у него «горел зачёт». Прежде, чем решать, я узнала, по какому алгоритму его учат, оказалось АРИЗ 77. Прошло 40 лет. Алгоритм претерпел много изменений к лучшему. Но как трудно принимаются изменения к новому даже активными, любознательны ми людьми.

На конференции в Петрозаводске в 1985 году Генрих Саулович подшучивал надо мной, когда я стала восхищаться алгоритмом АРИЗ 85 В. Что ж восхищаться, когда УЖЕ придумано!? Знал бы он, что через 30 лет после этого, его последователи из города «Н» ещё не освоили этот алгоритм.

Как технические системы, стремясь к идеальности в соответствии с ЗРТС, то развёртываются, то свёртываются, так и алгоритм решения изобретательских задач на пути своего совершенствования то добавляет в свое содержание дополнительные подсистемы, расширяющие решательные способности, то свёртывает некоторые подсистемы с целью упрощения.

Так, в течение многих лет наращивались приёмы, стандарты, противоречия. Сначала одно техническое противоречие, потом – одно физическое противоречие (ФП). И тут стали размножаться ФП. Появилась рекомендация углубить ФП. Простейшее углубление от ФП на макро уровне к ФП на микро уровне. Но возможна цепочка противоречий, получающаяся из-за того, что некоторые физические эффекты могут быть причиной других физэффектов. Например, за счёт электрического поля создаётся магнитное поле, магнитное поле может вызвать перемещение каких-то частиц, это перемещение в свою очередь может изменять структуру вещества и т.д.

Противоречия стали сопровождаться схемой конфликтов.

Таких схем Г.С. Альтшуллер нашёл 9.

И вот появляется антисимметричная пара технических противоречий, которая открывает АРИЗ 85 В. Вначале формулирование этой пары противоречий совершается, как бы «начерно» (шаг 1.1) Затем уточняется пара противоречий («изделие и инструмент» или «объект и субъект») на шаге 1.2. После этого появляются схемы конфликтов для ТП1 и ТП2. (шаг 1.3).

Сразу одновременно у нескольких разработчиков (Б.Л. Злотин, А.В. Зусман, В.Б. Крячко) появляется мысль надписывать функции над ранее безымянными стрелками конфликтов. Надписали. Обрадовались, что это удобно.

И тут же оказалось, что вместо шагов 1.1, 1.2 и 1.3 достаточно нарисовать схему конфликтов, на которой пометить конфликтующую пару и надписать противодействующие функции («Глазки»)[3]. При этом не нужно ломать голову над выбором схемы конфликтов из девяти. Фактически важно отношение решателя к функции. Хорошо, что инструмент выполняет заданную ему главную функцию (линия гладкая), плохо, что существует некоторая помеха (брак). Для функции, которую надо поменять, используется волнистая линия. Решателя беспокоит именно эта проблема (волнует). В парном (антисимметричном) противоречии – наоборот (на первый взгляд формально): якобы исправили недостаток, зато потеряли главную функцию.