Ступени осевой турбомашины образуют проточную часть. Процесс расширения в осевой турбине или сжатия в осевом компрессоре происходит в одной или нескольких ступенях. Ступень турбины – это совокупность неподвижного соплового аппарата, поворачивающего рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса, и вращающегося рабочего колеса. Ступень компрессора – это совокупность вращающегося рабочего колеса и неподвижного спрямляющего аппарата.

В зависимости от характера расширения рабочего тела различают активные и реактивные ступени турбины. В активных ступенях потенциальная энергия пара (газа) преобразуется в кинетическую только в сопловых аппаратах, и кинетическая энергия используется для вращения рабочих лопаток. В реактивных ступенях расширение рабочего тела начинается в сопловом аппарате и продолжается в каналах рабочих лопаток, имеющих конфигурацию реактивного сопла. Полезная работа совершается в активной ступени только вследствие изменения направления потока рабочего тела, а в реактивной ещё благодаря силе рабочего тела в межлопаточных каналах.


Модель одной ступени паровой турбины. Автор фото dr. Kaboldy Péter.


Турбомашины классифицируют по нескольким признакам.

По направлению движения потока рабочего тела различают аксиальные турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

Осевая многоступенчатая турбина состоит из вращающегося ротора и неподвижного корпуса. Ротор несёт ряды закреплённых на нём рабочих лопаток. Перед каждым рядом рабочих лопаток в корпусе устанавливаются сопловые лопатки (в паровых турбинах их часто называют направляющими). Для уплотнения зазоров между ротором и корпусом применяются концевые и промежуточные уплотнения. Для подвода и отвода тепла служат соответственно входной и выходной патрубки либо в виде улиток, либо в виде кольцевых каналов.

Радиальная (центростремительная) турбина включает ротор и корпус. Ротор представляет собой рабочее колесо, несущее обычно изготавливаемые за одно целое с ним рабочие лопатки. Из входного патрубка (улитки) рабочее тело поступает в сопловой аппарат, а затем на рабочее колесо. Иногда сопловой аппарат выполняют без лопаток; в этом случае специально спрофилированная входная улитка служит безлопаточным сопловым аппаратом. Центробежный компрессор имеет аналогичные элементы.

На переднем конце вала ротора устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12% сверх номинальной.

В турбоагрегатах традиционно применяется «тихоходный» – несколько оборотов в минуту – валоповорот. Валоповоротное устройство предназначено для медленного вращения ротора при пуске и останове турбины для предотвращения теплового искривления ротора.


Схемы основных типов турбин и турбокомпрессоров.

а – осевая турбина; б – центростремительная турбина; в – осевой компрессор; г – центробежный компрессор; 1 – ротор; 2 – входной патрубок (улитка); 3 – корпус; 4 – выходной патрубок (улитка); 5 – концевые уплотнения; 6 – подшипниковые узлы; 7 – промежуточные уплотнения; 8 – рабочая лопатка; 9 – сопловая лопатка; 10 – спрямляющая лопатка; 11 – лопаточный диффузор; 12 – безлопаточный диффузор.