Поглощая пар хладагента, крепкий раствор бромистого лития становится слабым – его концентрация снижается. Слабый раствор стекает в поддон абсорбера, откуда насосом подаётся в трубное пространство растворного теплообменника.

После подогрева в теплообменнике слабый раствор поступает в межтрубное пространство генератора. В генераторе слабый раствор бромистого лития упаривается за счёт теплоты греющей среды, поступающей в трубное пространство генератора.

Упаренный (крепкий) раствор из генератора поступает в межтрубное пространство регенеративного теплообменника, где охлаждается слабым раствором и далее направляется на орошение абсорбера.

С помощью насоса слабый раствор из абсорбера через теплообменник растворов подаётся в генератор, где в результате нагрева происходит процесс десорбции – разделение раствора с выделением водяного пара.

Образующийся в генераторе водяной пар поступает в конденсатор, где конденсируется на внешней поверхности теплообменных труб. В конденсаторе за счёт охлаждения водой происходит сжижение водяного пара и конденсат пара (хладагент) через регулирующий вентиль (гидрозатвор) поступает в испаритель.  Теплота конденсации водяного пара отводится охлаждающей водой, протекающей через трубы конденсатора.


Схема абсорбционной бромистолитиевой холодильной машины.

1 – генератор; 2 – абсорбер; 3 – теплообменник; 4 – конденсатор; 5 – испаритель; 6 – насос.


При снижении давления из распылённого потока воды в испарителе происходит испарение части её массы, за счёт чего охлаждается остальная часть, которая, в свою очередь, охлаждает промежуточный хладоноситель.

Отличительные особенности рабочей схемы от теоретической заключаются в следующем:

– в рабочей схеме и действительном цикле учитывается влияние глубокого вакуума, который устанавливается в аппаратах; глубокий вакуум усиливает влияние гидростатического давления столба жидкости, характерного для аппаратов затопленного типа; давление кипения и абсорбции при этом переменны по высоте аппарата, в связи с чем наблюдается недовыпаривание в генераторе и недонасыщение раствора в абсорбере;

– получение холодильного действия при использовании в качестве холодильного агента воды связано с большими объёмами пара, переходящего из одного аппарата в другой, что обуславливает большие потери давления на преодоление гидравлического сопротивления соединяющих трубопроводов;

– в действительной холодильной машине наблюдаются потери тепла в окружающую среду.

Перечисленные выше отличительные особенности определяют конструктивное решение рабочей схемы бромистолитиевой абсорбционной холодильной машины.


Рабочая схема абсорбционной бромистолитиевой холодильной машины с аппаратами затопленного типа.

1 – генератор-конденсатор; 2 – испаритель-абсорбер; 3 – теплообменник растворов; 4, 5, 6 – насосы.


Для уменьшения влияния гидравлического сопротивления соединительных трубопроводов аппараты холодильной машины попарно объединены в одном корпусе: генератор с конденсатором, абсорбер с испарителем.

При кипении раствора в генераторе влияние гидростатического давления столба жидкости сохраняется, поэтому наблюдается недовыпаривание.

Наличие конечной скорости абсорбции, ограничения поверхности и времени контакта фаз в абсорбере обуславливают недонасыщение.

Предельное значение концентрации крепкого раствора – 64%. При бóльших значениях концентрации начинается кристаллизация бромистого лития.

Абсорбционная холодильная машина представляет собой сложную термодинамическую систему, состоящую из контуров раствора и хладагента.

Наиболее сложным является контур раствора. В АБХМ этот контур состоит из абсорбера, рекуперативного теплообменника и генератора.