Если мы говорим, что утюг плохо гладит, из-за того, что плохо нагревается, то при этом понимается, что плохо нагревается нижняя (рабочая) поверхность утюга. Она и является оперативной зоной. Все остальные части утюга (например, ручка) нас не волнуют.



Промежутки времени, во время которых к системе предъявляются требования, выполнение которых вызывает конфликтную ситуацию (то есть необходимость выполнения противоречивый требований) и называются оперативным временем.


Например, основные требования к толщине брони танка возникают во время боя, и совершенно никого не волнуют в то время, когда танк стоит на базе или находится на марше. Следовательно, оперативное время для танка – время боевых действий, атаки.


А теперь рассмотрим два примера по решению задач с использованием понятий «оперативная зона» и «оперативное время».


Пример 1


В 1980 году на Нижнетагильском металлургическом комбинате мы столкнулись с крайне сложной задачей. Необходимо было повысить качество проката для морских судов, снизить поперечную разнотолщинность листов (это было обязательным условием регистра Ллойда). На стане, построенном еще в 30-е годы, это сделать весьма сложно. Проблема состояла вот в чем. Лист прокатывают просто: слиток пропускают между двумя рабочими валками приблизительно так, как хозяйки отжимают мокрое белье, на старых стиральных машинах. Только валки не из резины, а из стали. Чтобы рабочие валки не сильно прогибались, устанавливают опорные валки. Это рабочая схема стана «кварто». Постепенно зазор между ними уменьшают, и, в конце концов, получается готовый лист, заданной толщины.

При такой технологии прокатчикам приходится решать две задачи:


во-первых, деформировать металл так, чтобы он получался с одинаковой толщиной в центре и на краях, то есть без поперечной разнотолщинности,

во-вторых, удерживать раскатываемый лист в валках строго по центру.


Вам может показаться, что это разные задачи. Но это не так. Дело в том, что усилия деформации настолько велики, что никакие посторонние дополнительные механизмы не способны удержать раскатываемый лист в валках, если из-за неравномерной деформации по ширине его начнет уводить в сторону. В результате произойдет авария.

Прокатчики нашли выход. Они сделали валки так, чтобы при нагрузке образовывался вогнутый профиль, и теперь раскатываемый лист сам центрует себя. Если он сдвинулся в какую-нибудь сторону, то горизонтальная составляющая усилия деформации загоняет его назад. И чем больше вогнутость, тем значительнее эффект самоцентрирования.


Вот тут и противоречие: чем больше вогнутость валков, тем больше поперечная разнотолщинность, то есть тем хуже качество проката, но зато более надежна устойчивость процесса. К тому времени, когда мы начинали работать, разнотолщинность между центром и краями достигала 1—1,2 мм при допуске всего 0,8 мм. Итак, налицо противоречие. Как быть?


Рис. 7. Стан «кварто». При нагрузке образуется поперечный профиль листа в виде «чечевицы».


Пример 2


В хирургии полостных органов – кровеносных сосудов, кишечника, пищевода, трахеи – часто применяется замена отдельных их участков трубчатыми протезами из синтетических полимеров, которые должны обеспечить изоляцию субстрата, находящегося внутри полости (пищи, воздуха, крови), от окружающих частей организма. Как и всякое инородное тело, трубчатые протезы постепенно снаружи и изнутри покрываются капсулой из соединительной ткани. При значительной длине протеза внутренняя часть этой капсулы недостаточно хорошо снабжается кровью, что вызывает ее дистрофию и медленное отмирание. Для того чтобы обеспечить связь между внутренней и наружной частями капсулы, лучше всего было бы применить пористые протезы, но в таком случае, прежде чем капсула будет образована, нарушится герметичность сосуда. Как быть?