Хлористый натрий (NaCl) даже при концентрации 3 % вызывает частичную инактивацию ферментов, при 5 %-ной концентрации обеспечивается ингибрирующий эффект, а 10 %



Рис. 4. Схема микробиологического распада аминокислот

ная концентрация повареной соли инактивирует мышечные пептидгидролазы почти полностью.

В технологии переработок неразделанной рыбы посолом, холодным копчением, вялением, а также при хранении охлажденной рыбы необходимо принимать во внимание деятельность ферментов внутренних органов (кишечника, пилорических придатков), представленных пепсином и трипсином, которые по оптимуму рН близки к пищеварительным ферментам наземных животных, однако имеют отличия. Пищеварительные ферменты рыб имеют температурный оптимум значительно ниже, а способность расщеплять белки выше, чем у наземных животных.

Их активность изменяется в зависимости от сезона, вида рыбы. Действие поваренной соли вызывает ингибирующий эффект, но остаточная активность ферментов внутренностей рыб выше, чем активность протеолитических ферментов мышечной ткани. Это обстоятельство объясняет необходимость детального изучения пищеварительных ферментов рыб, с тем чтобы устанавливать технологический процесс обработки с учетом изменчивости активности протеолитических ферментов в зависимости от различных факторов.

Параллельно протеолитическим процессам при созревании рыбы проходит и гидролиз жиров под действием ферментов – липаз по схеме:

триглицериды → диглицериды → моноглицериды → свободные жирные кислоты и глицерин.

Конечные продукты этого гидролиза (свободные жирные кислоты) повышают кислотное число жира, что ведет к его порче, но это не всегда отражается на органолептических показателях. Например, при вялении рыбы жиры подвергаются не только гидролизу, но и окислительным изменениям, но вкус и запах рыбы только улучшаются, т. е. не прослеживается прямая зависимость между распадом жиров и потребительской ценностью продукта.

Одновременно с изменениями белков, жиров при созревании рыбных продуктов существенные превращения наблюдаются в углеводной части.

Как было отмечено выше, процесс созревания собственно и начинается с фосфоролиза и гидролиза гликогена рыбы. Под действием окислительно—восстановительных ферментов гликоген подвергается распаду по схеме:

гликоген (животный крахмал) → глюкоза–1–фосфат → фруктоза–1,6–фосфат → фосфотриозы (фосфодиоксиацетон и фосфоглицериновый альдегид) → пировиноградная кислота (CH >3 COCOOH) → молочная кислота (H >3 CHOHCOOH).

Примерно 90 % всего гликогена распадается по такой схеме, что в итоге и приводит к повышению титруемой кислотности.

В это же время наблюдается и гидролиз гликогена под действием амилолитических ферментов по схеме:

гликоген (C>6H>10O>5)>n → декстрины (разной молекулярной массы) → мальтоза (C>12H>22O>11) → глюкоза (C>6H>12O>6).

Повышение содержания глюкозы усиливает сладость мяса рыбы и способствует реакциям ее взаимодействия с другими веществами с образованием различных комплексов (например, меланоидинов). Это улучшает вкус рыбы, но в некоторых случаях (при вялении, сушке) вызывает ухудшение товарного вида рыбы (потемнение поверхности тела).

Из фосфатов следует обратить внимание на ферменты, вызывающие гидролиз нуклеотидов (АТФ и др.) с образованием пуриновых (аденина, гуанина и др.) или пиримидино—вых (цитозина, урацила, тимина) оснований, сахаров рибоза или дезоксирибоза и фосфорной кислоты. Такой распад нук—леотидов (рис. 3) увеличивает количество экстрактивных веществ, усиливает вкус и аромат рыбных продуктов. Но одновременно расширяет питательную среду для микроорганизмов, делает продукт менее устойчивым при хранении.