Использование электронных сканирующих микроскопов с увеличением до 1 000–1 500 крат для изучения археологических материалов позволило расширить возможности метода до обнаружения частиц обрабатываемого материала (residue analysis) на рабочих участках орудий [Hurcombe, 1992]. Это в свою очередь заложило перспективы для появления и развития фитотрасологии [Anderson-Gerfaud, 1986, 1990; Jahren et al., 1997; Kealhofer еt al., 1999]. Наряду с фитолитами стали изучаться пятна крови (bloodstains) и остатки животного белка (blood protein residues), сохранившиеся на поверхности древних орудий [Briuer, 1976; Loy, 1983; Cattaneo et al., 1993; Eiseleetal., 1995; Gerlachetal., 1996]. Анализ частиц (residue analysis) раскрыл новые возможности в определении материалов, с которыми соприкасалось орудие. Однако его исключительное использование считается не всегда правомерным без сопутствующего определения функции орудия (use-wear) [Grace, 1996].

На рубеже ХХ–ХХI вв. трасологи начинают привлекать к своим исследованиям новые технические возможности. Ряд ученых стали применять сканирующий атомно-силовой микроскоп (atomic force microscope), имеющий высокое разрешение и способность различать степень и вид заполировки [Kimball et al., 1995; Gonzalez-Urquijo, Ibanez-Estevez, 2003; Faulks, 2011]. Развивается использование лазерной профилометрии (laser profilometry), которая позволяет измерять параметры изношенной поверхности орудия [Stemp, Stemp, 2001; 2003; Stemp et al., 2010]. Лазерный сканирующий конфокальный микроскоп (laser scanning confocal microscope) помогает получать оптические изображения высокого разрешения и на сегодняшний день занимает важное место в проведении экспериментально-трасологических исследований [Derndarsky, Ocklind, 2001; Evans, Donahue, 2008].

Среди методологических поисков особое место занимает проблема соотношения формы и функции древних каменных орудий, к ней также примыкает вопрос учета полифункциональных инструментов [Odell, 1981; Andrefsky, 1997]. Отдельные работы посвящены исследованию следов утилизации, возникших в результате контакта с рукоятью, и реконструкции системы крепления орудий каменного века [Rots, 2008; 2009].

Появление широкого круга технических средств для проведения экспериментально-трасологических исследований и анализа частиц привели ученых к специальному изучению химических и физических свойств самого процесса возникновения следов износа [Evans, Donahue, 2005; Lerner, 2007]. Появляются попытки создать универсальную компьютерную описательную систему признаков следов износа для удобства проведения анализа полученных в ходе экспериментально-трасологических определений данных [Lohse, 1996].

Немаловажной тенденцией является то, что на современном этапе отдельные исследователи в ходе экспериментально-трасологического анализа коллекций каменных орудий пытаются соединить подходы использования слабого и сильного увеличения (LPA и HPA) [Волков, 1999; Sajnerova-Duskova, 2007; Rots, 2009]. Проводятся также комбинированные исследования, включающие проведение трасологических анализа (usewear) с разным уровнем увеличения (от 50до 1 000) и анализа частиц (residue analysis) [Hardy, Garufi, 1998; Robertson, 2011]. Подобные сравнительные работы в последние годы проводит Н. А. Кононенко на австралийских материалах [Kononenko, 2007].

Однако, несмотря на появление таких комбинированных (комплексных) исследований в области трасологии, остаются исключительные приверженцы того или иного подхода. В рамках LPA выполнены, например, работы прибалтийских ученых [Piliciauskas, Osipowicz, 2010], американских трасологов [Lohse, 1996; Setzer, 2004; Lozny, 2004; Beyin, 2010]. Подхода HPA придерживается американский специалист Уильям Бэнкс [Banks, 2004].