Рис. 1.14. Достижимые множества портфелей , содержащих комбинацию безрискового и совокупность рискованных активов с учётом привлечения инвестором заёмных денежных средств (достижимое множество сформировано исключительно за счёт собственных средств, достижимое множество – с учётом привлечения инвестором собственных и заёмных денежных средств)


Анализ допустимого множества портфелей показывает, что эффективным множеством является граница . Если, по мнению инвестора, оптимальный портфель расположен на участке эффективного множества:

, то инвестор должен определить долю безрискового актива и долю касательного портфеля в совокупном портфеле, а также отказаться от привлечения заёмных денежных средств ();

, то инвестор должен исключить из портфеля безрисковый актив , а также отказаться от привлечения заёмных денежных средств ;

, то инвестор должен исключить из портфеля безрисковый актив и привлечь в необходимом количестве заёмные денежные средства ().

Если предположить, что кредитная ставка равна безрисковой ставке (т.е. ), а величина кредита ничем не ограничивается (), то достижимое множество портфелей будет расположено в области между двумя лучами и , выходящими из точки и проходящими через точки и соответственно (рис.1.15). Луч , проходящий через касательный портфель , является эффективным множеством портфелей.



Рис. 1.15. Достижимое множество портфелей , содержащих комбинацию безрискового и совокупность рискованных активов с учётом привлечения инвестором заёмных денежных средств при кредитной ставке, равной безрисковой ставке () и неограниченном кредите ()


В [1] обращается особое внимание на касательный портфель (рис. 1.15), поскольку данный портфель на луче является единственным, представляющим эффективное множество совокупности рискованных активов . Это позволило без обоснования критерия оптимальности объявить касательный портфель оптимальным [1, с. 245] и тем самым ограничило поле поиска оптимального портфеля до безальтернативного варианта независимо от степени избегания риска инвестором.

В свою очередь луч является эффективным множеством портфелей, содержащих комбинацию безрискового и совокупность рискованных активов с учётом привлечения инвестором собственных и заёмных денежных средств при кредитной ставке, равной безрисковой ставке. Так как структура касательного портфеля не зависит от предпочтений инвестора, задача инвестора сводится к определению относительных объёмов инвестирования и на участке эффективного множества или выбору подходящего кредитного плеча и на участке .


1.9. Рыночный и собственный риски портфеля активов

Как показано в п. 1.6, СКО доходности портфеля снижается по мере увеличения количества входящих в него активов. Но это не означает, что существует возможность достижения абсолютной устойчивости доходности портфеля. Например, большинство акций имеют тенденцию приносить высокие прибыли, когда экономика страны находится на подъёме, и низкие, когда экономика испытывает спад. Таким образом, даже хорошо диверсифицированные индексные портфели сохраняют достаточно высокую степень неустойчивости доходности, хотя и меньшую, чем какой–либо отдельно взятый актив.

В связи с изложенным, в портфельной теории Г.Марковица различают рыночный (или не диверсифицируемый, систематический) и собственный (или диверсифицируемый, несистематический) риски портфеля активов. В данном случае под риском понимается величина СКО доходности портфеля.

С теоретической точки зрения полезно рассмотреть портфель, в который включены активы с идентичными СКО доходностей и одинаковыми их долями в стоимости портфеля