Кеплер заметил, что все наблюденные Тихо Браге положения одной из планет лежат на одном и том же эллипсе. Ему ни на мгновение не приходит мысль, что благодаря странной игре случая Тихо смотрел на небо как раз в те моменты, когда истинная траектория планеты пересекала этот эллипс.
В таком случае не все ли равно, реальна ли простота или за ней скрывается сложная истина. Пусть простота будет следствием влияния больших чисел, которое сглаживает индивидуальные различия, или пусть она зависит от малости некоторых величин, позволяющей пренебрегать некоторыми членами, – как бы то ни было, она не случайна. Реальна ли эта простота или призрачна – она всегда имеет причину. Мы можем рассуждать таким образом всегда, и если простой закон был подтвержден большим числом отдельных наблюдений, то у нас есть законное право предположить, что он и впрямь будет верен в аналогичных случаях. Отказаться от этого – значило бы для нас приписать случайности недопустимую роль.
Однако имеется одно отличие. Простота реальная, глубоко коренящаяся, устояла бы перед увеличением точности наших измерительных средств. Если бы мы считали природу простою в основе, мы должны были бы сделать заключение от простоты приближенной к простоте строгой. Так прежде и поступали; но мы больше не имеем на это права.
Так, например, простота законов Кеплера – только кажущаяся. Это обстоятельство не мешает нам со значительным приближением прилагать эти законы ко всем системам, подобным Солнечной системе, но оно препятствует им быть строго точными.
Роль гипотезы. Всякое обобщение есть гипотеза. Поэтому гипотезе принадлежит необходимая, никем никогда не оспаривавшаяся роль. Она должна лишь как можно скорее подвергнуться и как можно чаще подвергаться проверке.
Если она этого испытания не выдерживает, то, само собой разумеется, ее следует отбросить без всяких сожалений. Так вообще и делают; но иногда не без некоторой досады. Но это чувство ничем не оправдано; напротив, физик, который пришел к отказу от одной из своих гипотез; должен был бы радоваться, потому что тем самым он нашел неожиданную возможность открытия. Я предполагаю, что его гипотеза не была выдвинута необдуманно, что она принимала в расчет все известные факторы, могущие помочь раскрыть явление! Если она не оправдывается, то это свидетельствует о чем-то неожиданном, необыкновенном; это значит, что предстоит найти нечто неизвестное, новое.
И была ли опровергнутая таким образом гипотеза бесплодной? Нисколько! Она, можно сказать, принесла больше пользы, чем иная верная гипотеза: не только потому, что она вызвала решающий опыт, но и потому, что, не будь ее, этот опыт был бы произведен наудачу, и в нем не увидели бы ничего чрезвычайного; только в списке фактов прибавился бы один лишний, не влекущий за собой никаких следствий.
Теперь выясним, при каком условии пользование гипотезой не представляет опасности? Одного твердого намерения руководиться опытом еще недостаточно; этим еще не исключается возможность влияния опасных гипотез; такими в особенности являются те, которые вводятся неосознанно, принимаются молчаливо, почему мы и не можем от них избавиться. Здесь-то и обнаруживается еще одна услуга, которую нам может оказать математическая физика. По свойственной ей точности она вынуждает нас формулировать все гипотезы, которые мы иначе могли бы допустить, сами не подозревая этого.
Заметим, с другой стороны, что весьма важно не множить гипотез чрезмерно и вводить их только одну после другой. Если мы создали теорию, основанную на множестве гипотез, и если опыт осуждает ее, то как найти между нашими предпосылками ту, которая должна быть изменена? Открыть ее было бы невозможно. И наоборот, если опыт согласуется с теорией, то можно ли считать, что подтверждены сразу все гипотезы? Можно ли надеяться из одного уравнения определить несколько неизвестных?