) способна работать с точностью до половины градуса, что примерно равно величине углового расхождения лучей при полнолунии. Джон Лёрнд, возглавивший через 20 лет проект DUMAND – первую попытку превратить эти мечты в реальность, отмечает, что


Грейзен так никогда и ничего не сделал в этом направлении. А Рейнес со своей командой с самого начала перехватил инициативу и начал активно работать с идеей в Штатах.


В своей обзорной статье, написанной в 1960 году, Рейнес обсуждал вопросы выявления «нейтрино, возникших за пределами Земли (космических) и в земной атмосфере (из-за воздействия космических лучей)»>197. Однако он был более консервативен, чем Грейзен и Марков. Возможно, это было связано с последствиями его прежней неудачной попытки выявить рукотворные нейтрино: он предпочел проигнорировать первый вариант, а второй назвал «наиболее серьезным». Тем не менее он начал уже в 1963 году посещать шахты в поисках места для размещения инструмента Грейзена и задумывался об использовании инструмента Маркова в океанских водах как минимум с 1966 года>198.


Мюонные нейтрино (νμ), проходящие сквозь инструмент Грейзена или оболочковую конструкцию. Верхнее нейтрино, входящее слева, вступает во взаимодействие внутри детектора, поэтому световой конус от возникающего в результате мюона (μ) активизирует детекторы только на выходе. Нижнее нейтрино, входящее справа, вступает во взаимодействие за пределами детектора и создает мюон, который активизирует детекторы при входе и выходе. Таким образом, оболочка из детекторов «вето» помогает исключить из изучения мюоны, рожденные за пределами детектора.



По всей видимости, Рейнес пришел к заключению, что выявление нейтрино по методу Черенкова – дело слишком отдаленного будущего. При этом он прекратил попытки выявления атмосферных (или, по его словам, «создаваемых космическими лучами») нейтрино с помощью какого-то иного метода. Это был большой шаг – первая попытка выявить нейтрино, созданные природой, а не реактором или бомбой.

Атмосферные нейтрино возникают таким же образом, что и атмосферные мюоны, – путем распада вторичных частиц (в том числе мюонов), рожденных при столкновении первичных космических лучей с атмосферой. Ниже мы увидим, что эти нейтрино полезны для некоторых областей физики элементарных частиц, однако никак не связаны с астрономией, поскольку место их рождения находится слишком близко к Земле.

В какой-то момент 1963 года Рейнес узнал об одной докторской диссертации, защита которой прошла в Бомбейском (ныне Мумбайском) университете. В ней выдвигалось предположение о том, что некоторые шахты в индийском золотодобывающем регионе Колар могут быть достаточно глубокими для того, чтобы обеспечить защиту от атмосферных мюонов и возможность выявления атмосферных нейтрино. Рейнес познакомился с индийскими учеными – авторами идеи и даже посетил шахты, о которых шла речь, однако затем все же предпочел самую глубокую шахту в мире – южноафриканскую Ист-Рэнд, расположенную недалеко от Йоханнесбурга. К тому времени он уже покинул Лос-Аламос и возглавил кафедру физики в Технологическом институте Кейс (ныне Университет Кейс-Вестерн-Резерв) в Кливленде, штат Огайо.

В сотрудничестве с группой из Университета Витватерсранда (Йоханнесбург) Рейнес установил крупнейший на то время детектор частиц с 20 тоннами жидкого сцинтиллятора в лаборатории, расположенной в трех километрах под землей. Местные горняки тут же наградили ученых прозвищем goggafangers («ловцы жуков») а самого Рейнеса стали величать makulu bass goggafanger – «большой человек, начальник ловцов»