. И теперь, когда Чедвик нашел для нейтрона четкое место в ядре, появилась возможность понять суть двух форм бета-распада, напоминающих две стороны одной и той же монеты.

Фосфор располагается на две позиции правее алюминия в периодической таблице элементов: в его ядре на два протона больше. Жолио-Кюри удалось заставить ядро атома алюминия принять оба протона из альфа-частицы. Созданный ими искусственный фосфор затем выпустил один позитрон и превратился в кремний, располагающийся в таблице между алюминием и фосфором. Теперь мы уже знаем, что при такой форме бета-распада протон заменяется нейтроном и, таким образом, в результате распада возникает элемент, находящийся на предыдущем месте в периодической таблице, – в прежнем процессе нейтрон менялся на протон и появлялся следующий элемент. Электрический заряд сохраняется в каждом из этих случаев, поскольку возникновение позитрона компенсирует исчезновение протона в процессе, использованном Жолио-Кюри, в то время как в изначальном процессе возникновение электрона компенсировало появление протона.

Следующий элемент ясности в идею Паули добавил Чарльз Драммонд Эллис. Можно сказать, что он забил последний гвоздь в гроб альтернативной гипотезы бета-распада, предложенной Нильсом Бором. Как мы помним, Бор предположил, что принцип сохранения энергии может не выдерживаться в отдельных случаях распада, однако работает в процессе в целом. Это предполагало, что высокие значения в спектре энергии бета-электронов будут встречаться редко, однако у спектра не будет четкой верхней границы. В ходе конференции Эллис и его ученик У. Дж. Хендерсон представили результаты, согласно которым спектр энергии все же имел верхнюю границу, причем именно там, где она ожидалась по итогам обсуждений энергии массы>74. Это значило, что средняя энергия электронов должна была быть ниже этой границы, то есть энергия терялась даже в среднем — если только в процессе не участвовала хотя бы одна другая частица. Кое-кто утверждает даже, что в ходе этого эксперимента Эллис и Хендерсон открыли нейтрино, и по сегодняшним стандартам научного открытия с этим можно было бы согласиться. Однако Бор по-прежнему демонстрировал необычайное упорство и не сдавался еще три года>75.

Сложив все эти новые открытия в одну картину, Паули понял, что обе формы бета-распада представляют собой еще одну проблему с точки зрения сохранения энергии. Он подумал о спине, который требовал излучения нейтрино: если вы помните, каждая частица, вовлеченная в любую из форм бета-распада, обладает полуцелым спином. К примеру, если в процессе Жолио-Кюри протон в нестабильном ядре атома фосфора меняется на нейтрон и происходит излучение одного лишь позитрона, возникает еще один полуцелый спин: два полуцелых спина могут вместе создать значение, равное 1 или 0, но не изначальное полуцелое значение.

Однако в случае, когда происходит также выброс нейтрино со значением спина, равным 1/2, спин сохраняется. Через много лет Паули писал>76:


С учетом этой новой ситуации мое желание отложить публикацию представляется излишним… я отказался от своих идей в отношении нейтрино (как эта частица называется теперь) в ходе дискуссии на конференции>77.


Крошечная частица еще не окончательно родилась, однако по прошествии трех лет можно было сказать, что она хотя бы была зачата. К тому времени и сознание ее первооткрывателя вновь обрело ясность.

* * *

Психотерапевтические сеансы Паули у молодой женщины-врача продолжались пять месяцев, «а затем в течение еще трех месяцев он работал над собой самостоятельно», пишет Юнг, «пунктуально отслеживая собственное бессознательное. В этом деле он был очень талантлив»