Тот факт, что в 1930 году нейтрон еще не был открыт, серьезно усиливал неразбериху. Примитивная теория того времени утверждала, что ядро строится из протонов с положительным зарядом и электронов с отрицательным зарядом. Соответственно, в нашем примере ядро углерода‑14 должно было бы состоять из 14 протонов и 8 электронов. Было известно, что величина его электрического заряда равна 6, то есть электроны должны были компенсировать соответствующую величину положительного заряда со стороны протонов.
В процессе бета-распада ядро углерода‑14 превращается в ядро азота‑14, изотопа седьмого элемента периодической таблицы, который, согласно принятому в то время ходу мыслей, должен был бы состоять из 14 протонов – так же как и углерод‑14 – и 7 электронов, на один меньше, чем до этого. Это позволяло объяснить изменение величины электрического заряда, поскольку величина заряда у ядра азота равна 7; казалось, все сходится, поскольку после распада электрон с высокой скоростью покидает ядро.
Но все сходилось только до того момента, когда вы обращали внимание на энергию.
В 1905 году Эйнштейн продемонстрировал эквивалентность энергии (E) и массы (m) с помощью своего знаменитого уравнения E=mc>2. (Буква c обозначает скорость света, постоянную величину.) Таким образом, с точки зрения энергии до распада мы имеем обычную энергию массы ядра углерода‑14, а после него у нас возникают величины энергии массы ядра азота и электрона плюс так называемая кинетическая энергия, которой обладает электрон из-за своего движения. Поскольку массы ядра азота и электрона постоянны, но их совокупная масса меньше, чем масса изначального ядра углерода, то ядерная модель 1930 года утверждала, что каждый электрон, испускаемый в ходе бета-распада, должен обладать одной и той же кинетической энергией или скоростью. Эта энергия должна быть достаточной для того, чтобы компенсировать разницу в величине энергии массы между частицей, существовавшей до распада, и двумя частицами, возникшими после него.
Проблема состояла в том, что у возникавших электронов имелся целый диапазон, или спектр энергий. Если бы все электроны покидали ядро с самым высоким уровнем энергии в диапазоне, то все было бы нормально, однако на практике такое, казалось, происходило крайне редко (более того, сейчас мы уже знаем, что этого не происходит в принципе). Казалось, что небольшая доля энергии каким-то образом исчезает.
Эта проблема оставалась нерешенной более 20 лет>30. Лиза Мейтнер, австрийский ученый-экспериментатор с хорошей теоретической подготовкой, и Отто Ган, знаменитый немецкий радиохимик, занялись изучением спектра бета-излучения в 1907 году. Они считали, что им вообще не удастся найти никакого спектра, и поначалу все шло именно так, как они ожидали, – и это было чрезвычайно странной ошибкой для столь профессиональной команды экспериментаторов. Вскоре они выявили некоторые недостатки своих методов, улучшили их и в 1911 году получили первые, изрядно смутившие их свидетельства того, что электроны действительно обладают определенным спектром. Мейтнер, единственный теоретик в команде, не была готова согласиться со своими собственными результатами. Она выдвинула целый ряд предположений относительно возможных проблем в технике нового эксперимента или вторичных процессов в ядре, которые могли бы как-то изменить изначально чистый поток. Однако большинство сомнений экспериментаторов рассеялось в 1914 году, когда Джеймс Чедвик, работавший под руководством великого Эрнеста Резерфорда в Кавендишской лаборатории в британском Кембридже, завершил то, что ныне считается первым четким экспериментом, доказавшим существование спектра