И Spark поддерживает язык Scala, и предоставляет уникальную среду для обработки данных.

Для управления кластерами Spark поддерживает автономные нативные кластеры Spark, или вы можете запустить Spark поверх Hadoop Yarn.

Что касается распределенного хранилища, Spark может взаимодействовать с любой системой хранения, включая HDFS, Amazon S3 или с каким-либо другим пользовательским решением.

Cloudera QuickStart VM



Для начала работы нам нужно скачать виртуальную машину Cloudera, позволяющую ознакомиться со стеком Cloudera Hadoop.



После скачивания и распаковки архива, запустим виртуальную машину.



Для этого в VirtualBox импортируем скачанную конфигурацию ovf.



После запуска виртуальной машины Cloudera QuickStart вы увидите рабочий стол и открытый браузер.

И если вы посмотрите на этот браузер, вы увидите, что здесь представлено несколько разных сервисов Cloudera.

Здесь есть Hue, Hadoop, HBase, Impala, Spark, и т. д.

Это все приложения стека Cloudera Hadoop.

Здесь браузер выступает как клиент, для доступа к этим сервисам, запущенным на виртуальной машине, для доступа с помощью URL адреса.

И давайте пройдемся по ним и узнаем, что они нам могут предоставить.



Откроем вкладку Overview NameNode Hadoop.

Здесь мы видим обзор нашего стека Hadoop.

Мы можем видеть, когда произошла инициализация этого стека.

И этот обзор дает нам полную сводку по всем конфигурациям, количеству файлов и т. д.



Давайте откроем вкладку Datanodes.

Этот сервис позволяет посмотреть на все имеющиеся у нас Datanodes.

Напомним, что кластер HDFS состоит из одного NameNode, главного сервера, который управляет пространством имен файловой системы и регулирует доступ клиентов к файлам.

И существуют узлы данных Datanodes, обычно по одному на узел кластера, которые управляют хранилищем, подключенным к узлам.



Откроем вкладку RegionServer HBase/

HBase – это столбцовое хранилище данных, которое хранит неструктурированные данные в файловой системе Hadoop.

Здесь показывается количество запросов, которые делаются для чтения и записи в базу данных HBase.

И мы можем видеть все вызовы и задачи, которые были переданы в базу данных.



Impala позволяет нам отправлять высокопроизводительные SQL-подобные запросы к данным, хранящимся в HDFS.

И здесь мы можем посмотреть последние 25 выполненных запросов, мы можем посмотреть на запросы, которые происходят прямо сейчас, мы можем посмотреть на местоположения и фрагменты, к которым были отправлены эти запросы.



Далее, давайте откроем вкладку Oozie.

Здесь мы можем увидеть количество отправленных заданий, когда они были запущены, и т. д.



Теперь, давайте вернемся к исходной веб-странице, странице приветствия, и нажмем Start Tutorial.

И этот урок предложит нам введение в стек Cloudera.



На этой странице говорится, что в этом уроке представлены примеры в контексте созданной корпорации под названием DataCo.



И вопрос первого упражнения – какие продукты любят покупать клиенты корпорации?

Чтобы ответить на этот вопрос, вы можете посмотреть на данные транзакций, которые должны указать, что клиенты покупают.

Вероятно, вы можете это сделать в обычной реляционной базе данных.

Но преимущество платформы Cloudera заключается в том, что вы можете делать это в большем масштабе при меньших затратах.

Здесь сбоку есть информация о Scoop.

Это инструмент, который использует Map Reduce для эффективной передачи данных между кластером Hadoop и реляционной базой данных.

Он работает путем порождения нескольких узлов данных, чтобы загружать различные части данных параллельно.

И по окончании, каждый фрагмент данных будет реплицирован для обеспечения доступности и распределения по кластеру, чтобы вы могли параллельно обрабатывать данные в кластере.