Структурными элементами (по данным элементарного анализа) органической части древесины являются углерод (45–50 %), кислород (40–45 %), водород (4,5–6%) и азот (0,3–3.5 %). Содержание золы обычно составляет несколько процентов или доли процента (0,3 % в ели или березе без коры, 1,6 % в березовой коре и 3,4 % в еловой коре). Очевидным преимуществом древесной биомассы перед ископаемым топливом является низкое содержание в ней серы.
2.2. Особенности процесса сжигания биомассы в топочных устройствах
Процесс сжигания местных видов топлива при смешивании с воздухом состоит из нескольких этапов. На рис. 2.1. представлена диаграмма горения древесины и выделения тепла.
Рис. 2.1. Диаграмма горения топлива и выделения тепла
Как видно из рис. 2.1, на первом этапе требуется дополнительное тепло для испарения влаги, высушивания и воспламенения топлива. При температуре свыше 100ºС начинается процесс пиролиза, при котором летучие вещества углеводородных соединений начинают испаряться.
В интервале 200–300ºС происходит воспламенение твердого топлива. Сухая солома воспламеняется при температуре около 200ºС, сухой торф – при температуре 225–280ºС, сухая древесина – 220–300ºС. При температуре 500–600ºС начинается процесс горения летучих компонентов, содержание которых в горючем веществе составляет около 75 %. В интервале 800–900ºС происходит сгорание твердого углерода и смолы, образующие при этом дымогарные газы дожигаются в камере с подачей воздуха (газогенераторный процесс). При этом дополнительное выделение тепла повышают температуру газов до 1000–1100ºС. В полученной газо-воздушной смеси сгорают токсичные образования, тяжелые соединения и частицы сажи.
Процесс горения и, соответственно, уровень выбросов и энергетический КПД зависят от большого числа переменных. Это следует учитывать при проектировании и эксплуатации любых установок, работающих на биомассе.
В зависимости от технологии сгорание топлива может быть полным и неполным. При полном сгорании происходит выброс двуокиси углерода, оксидов азота и серы, хлористого водорода, частиц и тяжелых металлов. При неполном сгорании топлива образовываются и происходят выбросы моноокиси углерода, несгоревшие углеводороды, частицы, полихлорированные диоксины и фураны, аммиак.
Рассмотрим ряд факторов, влияющих на процесс сгорания топлива.
1. Механизмы теплопередачи. Теплообмен может осуществляться посредством передачи, конвекции и излучения теплоты. Для обеспечения низкого уровня выбросов при неполном сгорании топлива необходимо минимизировать потери тепла в топочной камере посредством оптимизации переменных характеристик, оказывающих прямое воздействие на механизмы теплопередачи. Также для получения высокого теплового КПД необходимо обеспечить эффективный теплообмен между топочной камерой и впуском дымовой трубы. Эффективный теплообмен необходим для получения высокого теплового КПД. Управление активным процессом теплообмена осуществляется с помощью систем управления, регулирующие переменные параметры технологического процесса, такие, например, как количество воды, протекающее через котел.
2. Аккумулирование теплоты. Значительное количество теплоты аккумулируется в стенках топочной камеры, забирающих теплоту из объема топочной камеры на первоначальном этапе процесса горения. Это явление играет особенно важную роль при сжигании биомассы в установках малой мощности. Аккумулированное тепло, передаваемое в окружающую среду со значительной задержкой во времени, используется в печах с аккумуляцией тепла (теплоаккумулирующие печи). Однако на начальном этапе процесса горения может наблюдаться высокий уровень выбросов от неполного сгорания.