Вот пример табличных данных, используемых для анализа временных рядов в экономике:



В этом примере каждая строка представляет год, а столбцы содержат информацию о количестве населения, ВВП, инфляции и безработице в соответствующем году. Эти данные могут быть использованы для анализа тенденций и прогнозирования будущих значений этих показателей. Например, на основе этих данных можно построить модель машинного обучения для прогнозирования ВВП на следующий год на основе количества населения и предыдущих значений ВВП, инфляции и безработицы.

Обработка естественного языка (NLP) – анализ и понимание текстовых данных в табличной форме. Примеры: анализ тональности текста, извлечение ключевых слов или автоматическая категоризация текстов.



В этом примере каждая строка представляет собой отзыв на продукт, содержащий его текст и тональность (положительную или отрицательную). Эти данные могут использоваться для анализа качества продукта и выявления проблем, которые нужно решить. Они также могут использоваться для создания модели машинного обучения, которая может автоматически классифицировать тональность отзывов на продукт.

Анализ табличных данных с помощью машинного обучения может быть применен в широком спектре отраслей и сфер, таких как финансы, здравоохранение, розничная торговля, логистика, маркетинг, образование и многих других.



Этапы типовых проектов по машинному обучению

Внедрение проектов машинного обучения может быть сложным процессом, требующим знаний и опыта, а также взаимодействия между различными командами и отделами. Обычно для внедрения таких проектов используется методология, состоящая из нескольких этапов, которая гарантирует эффективность и успешность проекта.

Определение проблемы и целей проекта:

На этом этапе команда определяет конкретные проблемы, которые должны быть решены с помощью машинного обучения, а также формулирует цели и ожидаемые результаты проекта.

Цели:

Определить проблемы, которые должны быть решены с помощью машинного обучения

Сформулировать цели и ожидаемые результаты проекта

Задачи:

Согласовать проблемы и цели с заинтересованными сторонами

Определить метрики для измерения успеха проекта

Документы:

Техническое задание (Project Charter) с описанием проблемы и целей проекта

Сбор и подготовка данных:

Качество данных является ключевым фактором успеха в машинном обучении. На этом этапе команда собирает и предобрабатывает данные, удаляет пропущенные значения, исправляет ошибки, кодирует категориальные переменные и нормализует числовые признаки.

Цели:

Собрать данные, необходимые для обучения и валидации моделей

Подготовить данные к анализу и использованию в моделях машинного обучения

Задачи:

Очистить данные от ошибок и пропущенных значений

Обработать категориальные и числовые признаки

Документы:

Отчет о сборе и подготовке данных, описывающий процесс и результаты работы с данными

Разработка и обучение моделей:

На этом этапе команда разрабатывает и обучает модели машинного обучения, используя выбранные алгоритмы и подходы. Затем проводится оценка качества моделей, сравнение их результатов и выбор наилучшей модели.

Цели:

Разработать и обучить модели машинного обучения

Оценить качество моделей и выбрать наилучшую

Задачи:

Выбрать подходящие алгоритмы машинного обучения

Обучить модели и провести первичную оценку их качества

Документы:

Отчет о разработке и обучении моделей, содержащий описание используемых алгоритмов, параметров моделей и результатов оценки качества

Тюнинг гиперпараметров и оптимизация моделей:

Для повышения производительности модели проводят тюнинг гиперпараметров, используя различные методы поиска и оптимизации. Этот процесс включает настройку параметров модели для достижения лучших результатов.