Схемы сварки трением показаны на рисунке 23:

а) с вращением одной детали;

б) с вращающейся вставкой;

в) с вращением в противоположные стороны;

г) с возвратно-поступательным движением одной детали.

В результате нагрева и сжатия происходит совместная пластическая деформация. Сварное соединение образуется вследствие возникновения металлических связей между чистыми (ювенильными) контактирующими поверхностями свариваемых заготовок. На сопряженных деталях в месте стыка происходит интенсивный нагрев контактирующих поверхностей. Например, для углеродистых сталей обыкновенного качества температура достигает 900–1350 °C. При достижении температуры сварки процесс трения должен быть резко прекращен.

Окисные пленки на соединяемых поверхностях разрушаются в результате трения и удаляются за счет пластической деформации в радиальных направлениях. Сварка заканчивается естественным охлаждением деталей при повышенном сжимающем осевом усилии.

Выделяют несколько типов сварных соединений сваркой трением, которые показаны на рисунке 24:

а) сварка стержней встык;

б) сварка труб встык;

в) сварка встык стержня с трубой;

г) приварка стержня к листу;

д) приварка трубы к листу;

е) приварка стержня к массивной детали.

Основные технологические параметры сварки трением:

• скорость относительного перемещения (вращения) свариваемых поверхностей;

• продолжительность нагрева;

• удельное усилие сжатия заготовок;

• пластическая деформация, т. е. величина осадки;

• площадь сечения и конфигурация заготовки.


Рис. 23.

Схемы сварки трением

Преимущества стыковой сварки:

• высокая производительность;

• высокое и стабильное качество сварного соединения;

• возможность сварки разнородных металлов и сплавов;

• отсутствие вредных выделений;

• высокие энергетические показатели (например, при сварке трением углеродистой стали удельная электрическая мощность равна 15–20 Вт/мм>2, а при электрической контактной сварке – 120–150 Вт/мм>2);

• высокая скорость соединения деталей (машинное время в пределах 2–40 секунд);

• высокая степень механизации и автоматизации процесса;

• возможность использовать для сварки трением различные типы общепромышленных токарных и сверлильных станков.

Недостатки сварки трением:

• для каждого металла необходимо разрабатывать технологические режимы в зависимости от состава материала и геометрических параметров;

• необходимость контроля момента сварки с последующим прекращением процесса;

• необходим механизм давления для создания осевых усилий сжатия.

Ультразвуковая сварка

Волны, распространяющиеся в упругих средах (газах, жидкостях, твердых телах), называются в физике волнами малой интенсивности. Эти волны вызывают слабые механические возмущения. Звуковые волны, воздействуя на органы слуха, способны вызывать звуковые ощущения, если частоты звуковых колебаний лежат в пределах 16–20 000 Гц. Эта область называется областью слышимых звуков. Упругие волны с частотами 20–100 кГц называются ультразвуковыми.


Рис. 24.

Типы соединений сварки трением


Ультразвук («ультра» означает «сверх») – волнообразно распространяющееся колебательное движение частиц твердых тел, жидкостей и газов, происходящее с частотами более 16 000 колебаний в секунду. В физике принято измерять частоты колебаний в герцах (1 Гц = 1 колебанию в 1 секунду). Ультразвук назван так потому, что основная часть людей не слышит колебания свыше 16 кГц.

Сущность процесса ультразвуковой сварки состоит в том, что при приложении колебаний высокой (ультразвуковой) частоты к свариваемым деталям в них возникают касательные напряжения, вызывающие пластические деформации материала свариваемых поверхностей. В результате механических колебаний в месте соединения металлов развивается повышенная температура, зависящая от свойств материала. Эта температура способствует возникновению пластического состояния материалов и их соединению. В местах сварки образуются совместные кристаллы, обеспечивающие прочность сварного соединения. Таким образом, сварка с применением ультразвука относится к процессам, в которых используют