остроты, то теория должна измениться и, следовательно, развиться. Таким образом, основным двигателем развития физики, как и всякой другой науки, является отыскание этих противоречий. Отсюда мы получаем основу для объективной оценки научного достижения, не имеющего непосредственного применения на практике. Нахождение всякого нового явления в природе надо оценивать тем значительнее, чем больше изменений оно может потребовать от существующих в данное время взглядов или теорий».
В своём обращении к учёным59накануне войны П. Л. Капица ориентировал их при обосновании выбора направлений и методов исследований конкретными примерами.
«…Из развития теоретических обобщений выходило, что равновесие между веществом и излучением невозможно, так как получалось, что вся энергия теплового движения атома должна была непрерывно переходить в лучистую энергию. Это заключение хорошо известно физикам и носит обычно название парадокса Рэлея – Джинса. Это противоречие Рэлея – Джинса получило в Германии название «катастрофы Джинса – Рэлея» – этим эпитетом как бы оттенялся роковой характер для теории этого замечательного научного противоречия.
Мы знаем, результат этой «катастрофы» был чрезвычайно плодотворен для науки. Из нее родилась теория квантов. Ее и надо считать для развития современной физики после атомизма вторым по своей значительности теоретическим воззрением. Если бы всякая катастрофа вела к таким крупным благотворным последствиям, как эта, то мы могли бы только пожелать, чтобы таких «катастроф» было больше. История показывает, что наука по-настоящему двигается вперед, главным образом, подобными «катастрофами» малого и великого порядка.
Как многим из вас, наверное, известно, первым нашел выход из этого тупика Планк. Выход был прост и на первой стадии показался большинству чисто формальным. Несколько преобразовав классическую формулу излучения, введя новую постоянную, Планк показал, что отсутствие равновесия между веществом и излучением можно было устранить. Но понять настоящий глубокий и универсальный смысл этой постоянной, носящей по сей день имя Планка, удалось несколько позже. Физика обязана этим Эйнштейну – он первый понял фундаментальное значение открытия Планка и дал ему более общее физическое толкование, которое носит название закона Эйнштейна. Мне кажется, что по своим практическим последствиям для развития науки эта замечательнейшая работа Эйнштейна сыграла значительно большую роль, чем его знаменитаятеорияотносительности.
В самом деле, не только теоретически, но за последние годы и экспериментально, между энергией и массой поставлен знак равенства – они могут переходить друг в друга. Если же вещество в природе встречается только в дискретных массах, такую же прерывность естественно ожидать и в энергетических процессах. Это, конечно, нельзя рассматривать как доказательство, но во всяком случае это указывает, что такая связь вполне естественна.
Как известно, на первой же своей стадии развития, главным образом, благодаря идеям Бора, квантовая теория была чрезвычайно плодотворной при изучении атома. Строение и свойства атома мы знаем сейчас исключительно полно. Процессы лучеиспускания электронной оболочки атома описываются до больших деталей чрезвычайно точно. Именно, главным образом, разработка физики атома и привела к тому значительному развитию квантовой теории и к тем замечательным ее обобщениям, которые были даны Шредингером, Гейзенбергом и Дираком.
Но, несмотря на все эти успехи, было бы ошибочно думать, что квантовая теория закончена и не будет развиваться дальше. Тут может и должно быть большое развитие, и мы можем ждать даже