Процессы перемешивания имеют также большое значение в современных технологиях. С их помощью химики контролируют химические реакции для производства полимерных материалов с уникальными свойствами, распределяют добавки, уменьшающие вязкое трение в трубопроводах. Однако, несмотря на вездесущность процессов перемешивания, как в природе, так и в производстве, сам процесс смешивания до сих пор остается до конца не ясным. В разных областях исследователи не могут пока даже установить общую терминологию и используют различные названия.
Пока лишь можно сказать, что процесс перемешивания чрезвычайно сложен и обнаруживается в самых разнообразных научных системах и природных явлениях. В сфере современного искусства этим занимается стрим-арт. При создании теории перемешивания приходится рассматривать, например, растворимые и частично растворимые, химически активные и инертные жидкости, медленные ламинарные потоки>3, а также быстрые турбулентные потоки>4. Поэтому неудивительно, что на данный момент не существует единой теории, способной детально объяснить процесс перемешивания в жидкостях, и прямыми вычислениями невозможно охватить все важные аспекты этого явления.
Тем не менее определенная информация о процессе перемешивания может быть получена как с помощью экспериментов с краской, так и благодаря компьютерному моделированию.
Схематичное изображение ламинарного (a) и турбулентного (b) течения в плоском слое
Интересно, что если наука рассматривает в практических экспериментах последовательность перехода от ламинарного к турбулентному потоку, то в случае создания потокового произведения на картинной плоскости последовательность осуществляется наоборот – от турбулентного к ламинарному потоку.
Результаты исследований
Основы механики жидкостей.
«Ключом к пониманию основных аспектов смешивания является концепция «движения» – идея, восходящая к XVIII веку и связанная с именем известного математика Леонарда Эйлера. «Движение» жидкости описывается математическим выражением, показывающим, в какой точке пространства будет находиться каждый элемент жидкости в любой момент времени в будущем. Если траектория движения для данного потока известна, то в принципе можно узнать почти все и о перемешивании, которое этот поток может произвести. Например, можно вычислить силы и полную энергию, необходимую для достижения нужной степени перемешивания в системе.
В прошлом веке такой подход сменился описанием через поле скоростей жидкости, когда задается выражение для скорости в каждой точке потока в любой момент времени. Однако, зная «движение», можно легко вычислить поле скоростей, тогда как знание поля скоростей не позволяет явно вычислить «движение». Поскольку описание потока через «движение» жидкости является более фундаментальным, мы предпочитаем работать, придерживаясь этой концепции, хотя многие могут считать ее устаревшей.
Следы хаоса
Оказывается, даже единственное пересечение втекающего и вытекающего потоков с неизбежностью приводит к появлению непредсказуемых структур. Подобные пересечения могут возникать даже в таких «хороших» системах, как системы, описываемые законами движения Ньютона. Этот факт впервые был открыт в XIX веке французским математиком Анри Пуанкаре. Однако сложность анализа течения жидкости при наличии такого пересечения (подобное состояние системы сейчас называют хаосом) поразила Пуанкаре, и он решил больше не заниматься этой проблемой.
Подобная ситуация встречается и в других физических системах. Выдающийся американский физик XIX века Джозайя Уиллард Гиббс пришел к выводу, что потоковым системам присущи необратимость и непредсказуемость. Показательно в этом отношении, что для иллюстрации необратимости им был предложен гипотетический эксперимент, в котором рассматривалось перемешивание.