В применении к атомам квантовые правила приводят к дискретным значениям энергии. Для простоты возьмем атом водорода: в этом простейшем атоме с одним электроном ядро, кстати, тоже простейшее – это просто один протон. (Вспоминая свое детское недоумение при первом знакомстве с задачей записать четырьмя буквами – «в четырех клеточках» – слова «сушеный виноград», я предлагаю записать шестью буквами слова «ядро атома водорода».) Да, ядро и электрон притягиваются друг к другу (без этого атомов уж точно не было бы, но детали того, что электрон при этом делает, не слишком ясны. На первый план поэтому выходит «экономное» описание в терминах энергии, часто позволяющее обходиться без больших подробностей. На языке энергии можно говорить о притяжении между положительным и отрицательным зарядами: когда заряды близки друг к другу, их энергия меньше, а когда они расходятся, энергия такой системы возрастает (это неудивительно, потому что для разнесения их на большее расстояние необходимо прикладывать усилия, которые и идут в прирост энергии). В квантовом мире понятие энергии взаимодействия в целом сохраняет свой смысл{6} и там вполне можно руководствоваться идеей «меньше энергия взаимодействия – значит ближе».

Электрон, живущий в атоме на постоянной основе, должен обладать постоянной (неизменной во времени) энергией; отдавать или получать энергию означало бы, что в атоме что-то меняется, а нас прежде всего интересует атом, с которым ничего не происходит. И тут оказывается, что по совокупности квантовых правил электрон не может оставаться вблизи ядра «почти никогда» – а именно, никогда за исключением случаев, когда он обладает некоторыми конкретными, строго определенными значениями энергии. Это дискретные значения энергии – они отделены друг от друга интервалами, подобно «засечкам», нанесенным на отрезок линии; засечек, которые вы наносите тонким карандашом, неизмеримо меньше, чем «всех точек на отрезке».

Это и есть дискретность, лежащая в основе строения атомов. Электрону удается не расставаться с ядром, только если он занял определенную «энергетическую ступеньку» – обзавелся фиксированным значением энергии. Как и любой набор дискретных данных, разрешенные значения энергии можно перечислить в виде списка. Первой в списке идет наименьшая энергия, которую вообще может иметь электрон в данном атоме, за ней следующая, несколько бо́льшая, и т. д.

На постоянной основе электрон живет на самой нижней энергетической ступеньке. А если электрон взбодрить – передать ему порцию энергии подходящей величины, используя для этого свет или, скажем, толчки со стороны соседей, – то он поднимется на несколько энергетических ступенек выше. Потом снова «спрыгнет вниз», а лишнюю энергию отдаст в виде света. Не надо только представлять себе электрон прыгающим куда-то в пространстве, он от этого максимально далек. Вся «энергетическая лестница» – конструкция воображаемая, способ сказать, что электрон может существовать в атоме только при дискретных значениях энергии. А впрочем, воображаемая она только в качестве лестницы. В сочетании с другой, уже упомянутой дискретностью – излучением света порциями – энергетическая лестница становится почти буквально видимой: электрон испускает порцию света (фотон) строго определенной энергии (разница между двумя ступеньками), а значит, строго определенной окажется и длина световой волны, т. е. цвет этого света. Наблюдая этот свет, мы делаем вывод о разнице между значениями энергии, разрешенными для электронов в этом атоме. Желтые лампы уличного освещения могут нравиться или не нравиться, но желтые они именно потому, что разница в энергии между подходящими ступеньками в атоме натрия соответствует желтому цвету.