Рассчитаем показатель темпа прироста для заданного динамического ряда.

Темп прироста – это отношение абсолютного прироста к базисному уровню ряда:

Темп прироста – это темп роста, уменьшенный на одну единицу, или на 100 %. Различают базисные и цепные темпы прироста. Они показывают, на сколько процентов изменился уровень.

Рассчитаем показатель среднего (годового) темпа роста для заданного динамического ряда. В основу его расчета положена взаимосвязь базисного и цепных темпов роста.

Доказано, что x = x>1 × x>2 ×… × x>n. Заменим каждое x на 

. Отсюда получим три формулы среднего темпа роста:

1)

где n – это показатель времени, за который рассчитывается средний темп роста;

2)

где у – уровень ряда (абсолютный показатель);

3)

где х – цепные темпы роста;

n – период времени, который соответствует числу сомножителей. Средний темп роста показывает, во сколько раз ежегодно изменяется уровень исследуемого динамического ряда за изучаемый период в среднем.

Рассчитаем показатель среднего годового темпа прироста для заданного динамического ряда:

20. Методы выявления основных тенденций динамического ряда

Уровни динамического ряда изменяются под влиянием двух групп факторов: систематических (детерминированных) и случайных. Задача исследователя состоит в устранении в какой-то мере случайных факторов и выявлении основной тенденции развития уровней динамического ряда.

Эта задача может быть решена двумя способами:

1) сглаживанием по методу скользящих средних;

2) аналитическим выравниванием по методу наименьших квадратов.

Суть сглаживания уровней динамического ряда по методу скользящей средней заключается в следующем. Данный метод основан на идее перехода от менее крупных интервалов времени к более крупным. Такие средние величины называются скользящими. Они образуют сглаженный динамический ряд, по которому судят об основных тенденциях ряда. В сглаживании постепенно участвуют все уровни ряда путем передвижки на один уровень вперед.

Например, первое значение х>1 сглаженного динамического ряда рассчитывается по формуле:

Второе значение х>2 сглаженного динамического ряда рассчитывается по формуле:

где к период сглаживания.

Таким образом, полученные средние величины х>1, х>2 … образуют сглаженный ряд динамики.

Сглаживание можно производить и для четного периода, например для четырех лет. Вспомогательный ряд скользящих средних рассчитывается так же, как и при нечетном периоде, а основной рассчитывается постепенно на основе двух соседних средних вспомогательного ряда по формуле простой средней.

Аналитическое выравнивание – это более сложный прием выявления основных тенденций динамического ряда. Данный процесс включает два этапа:

1) выбор вида кривой (функции), форма которой соответствует характеру изменения динамического ряда;

2) определение параметров и выравненных значений уровней динамического ряда.

На первом этапе на линейном графике по фактическим данным строят ломаную кривую. При этом по оси абсцисс откладывают время, а по оси ординат – значения динамического ряда. Затем глазомерно оценивают ее и выбирают наиболее подходящую кривую. Это может быть прямая или парабола, показательная функция и т. д. Во всех случаях выбранная кривая должна удовлетворять методу наименьших квадратов. Его суть:

где у – фактические уровни динамического ряда;

y>t – выровненные или теоретические уровни для каждого периода t.

На втором этапе аналитического выравнивания параметры функции, например прямой y>t = a>0 + a>1t, определяются с помощью системы нормальных уравнений, например:

Определив а>0 и а>1, подставляют их значения в уравнение прямой, где