Общий индекс урожайности в агрегатной форме:

Агрегатная форма общих индексов количественных показателей. Рассмотрим агрегатную форму общего индекса физического объема товарооборота (q). I>q может быть построен по формуле Ласпейраса, которая является основной:

Данный индекс характеризует изменение физического объема товарооборота в среднем по совокупности товаров. Возможно также построение I>q по формуле Пааше:

Правило взвешивания общего индекса количественных показателей. Данные индексы взвешиваются по весам базисного периода.

Например, общий индекс посевной площади в агрегатной форме:

15. Средняя арифметическая форма общего индекса. Средняя гармоническая форма общего индекса

Средняя арифметическая форма общего индекса является преобразованием от агрегатной формы.

Средняя арифметическая форма общего индекса качественных показателей (на примере показателя цены) по схеме Ласпейраса:

Данную формулу удобнее использовать при расчетах, потому что для расчета можно использовать индивидуальный индекс цены i>p и произведение p>0q>0.

Средняя арифметическая форма общего индекса качественных показателей (цены) по схеме Пааше:

Средняя арифметическая форма общего индекса количественных показателей (на примере физического объема товарооборота):

Средняя гармоническая форма общих индексов также является преобразованием агрегатной формы.

Средняя гармоническая форма общего индекса качественных показателей (на примере показателя цены) по схеме Ласпейраса:

Однако эта формула неудобна на практике. Поэтому при расчетах используется средняя гармоническая форма общего индекса качественных показателей (цены) по схеме Пааше:

Средняя гармоническая форма общего индекса количественных показателей:

Индексы количественно-качественных показателей используют в агрегатной форме, но они могут быть преобразованы в средние формы, называемые неявными.

Например, средняя арифметическая форма индекса товарооборота:

Средняя геометрическая форма индекса товарооборота:

16. Индексный метод анализа динамики среднего уровня

Индексы качественных показателей – индексы средней арифметической величины, поэтому изменение среднего уровня качественного показателя зависит от изменения:

1) отдельных уровней показателей;

2) частей совокупности или структуры совокупности. Для определения того, в какой мере происходит изменение среднего уровня и каково влияние каждого фактора, используют систему взаимосвязанных индексов.

Индекс переменного состава – это отношение среднего уровня какого-либо показателя в отчетном периоде к среднему уровню его в базисном периоде:

Эту формулу используют, если веса (часть совокупности) – абсолютные показатели. Если же веса – относительные показатели (доля, удельный вес), то формула индекса переменного состава такова:

Он показывает, в какой мере произошло изменение среднего уровня показателя за счет влияния:

1) изменения индексируемого показателя (х);

2) изменения частей совокупности (m) или доли (удельного веса – f).

Индекс постоянного состава позволяет устранить влияние одного из факторов и оценить степень влияния другого фактора.

Общий вид формулы индекса постоянного состава:

или если веса – относительные показатели, то;

Индекс постоянного состава показывает изменение в среднем уровня какого-либо показателя х за счет изменения усредняемых уровней показателя. Таким способом устраняется влияние второго фактора и показывается, в какой степени изменение х влияет на изменение x.

Индекс структурных сдвигов позволяет оценить степень влияния m или f, при условии элиминирования влияния другого фактора, т. е.