Оценивание параметров нелинейной регрессии может базироваться: на линеаризации уравнения благодаря подходящим преобразованиям и оценки его параметров посредством применения метода наименьших квадратов; на оценке параметров на базе метода максимального правдоподобия и применения процедур оптимизационных методов.

Регрессии нелинейные различают согласно: включаемым в эти регрессии предикторам (такие нелинейного вида регрессии являются линейными по параметрам); включаемым в регрессии предикторам и подвергаемым оценке параметрам.

Если функции являются нелинейными по переменным объясняющим, возможно сведение их к линейным посредством замены переменных.

Если функции являются нелинейными по переменным-факторам и подвергаемым оцениванию параметрам, их сведение к линейным моделям происходит благодаря логарифмированию и замене переменных.

Если подобрать линеаризующее преобразование невозможно, для оценивания параметров прибегают к использованию методов нелинейной оптимизации на базе исходных данных.

Наилучшая нелинейная модель обычно выбирается на базе наименьшей стандартной остаточной ошибки, исчисленной для разных моделей. Если имеет место наличие ряда нелинейных моделей с сопоставимой точностью, рекомендуется останавливать выбор на модели, отличающейся большей простотой.


Регрессия категориальная


Фото из источника в списке литературы [4]


В качестве регрессии категориальной принято рассмотрение статистического метода моделирования взаимосвязи между категориальными переменными: зависимой и независимыми. Для построения модели рассматриваемой регрессии прибегают к шкалированию либо оцифровке переменных путем присвоения категориям числовых значений. После этого идет построение оптимального уравнения линейной регрессии относительно преобразованных новых переменных.

В данной модели и переменная и ее предикторы – категориальные.

Применение категориальной регрессии в маркетинге происходит, когда нужно описать покупательскую удовлетворенность в зависимости от таких факторов как простота совершения покупки, цена, качество товара. Посредством уравнения категориальной регрессии возможно прогнозирование уровня покупательской удовлетворенности в зависимости от всевозможных сочетаний значений категориальных независимых переменных.

2.3 Регрессия логистическая. Регрессия мультиномиальная логистическая

Регрессия логистическая

Под регрессией логистической или логит-регрессией понимают статистическую модель, используемую, чтобы предсказывать вероятности возникновения какого-то события посредством логистической функции. Эта регрессия относится к классу моделей бинарного выбора, в которых зависимая переменная является дихотомической (бинарной).

Зависимой переменной могут приниматься только значения в количестве двух и означать, к примеру, принадлежность к конкретной группе (скажем, к группе надежных клиентов либо ненадежных клиентов), совершаемое действие (покупка либо непокупка товара),ответы «да» либо «нет» (рекламный ролик нравится либо не нравится).

Построение обыкновенной регрессионной модели линейного типа с зависимыми бинарными переменными не допускается ввиду того, что если это построение будет иметь место, предсказанные значения зависимой переменной интерпретировать окажется практически невозможно.

Измерения значений факторов в моделях бинарного выбора – только количественные. В эти модели допускается включение категориальных переменных (выступающих в качестве факторов). В данных моделях обеспечивается построение регрессионной модели зависимости с принятием во внимание вероятности, что результативной дихотомической переменной будет принято значение 0 или 1, если значение факторов – заданное.