< b. .b > а; 2) транзитивности: а < b. c < а.с < b.; 3) асимметричности: а < b. .b < а [Курош 1962: 19].

Определим теперь понятие корреляции. В множестве фонем, рассматриваемом как класс классов, могут быть отмечены такие классы α>i и β>j, что каждый элемент a>ik класса α>i находится во взаимно-однозначном соответствии с элементом b>jl класса β>j. Это отношение назовем коррелятивным и определим следующим образом: отношение является коррелятивным, если никакие два элемента не связаны этим отношением с одним и тем же третьим и ни один элемент не связан этим отношением с двумя другими. Такое определение коррелятивного отношения дает У. Куайн [Quinе 1955: 299]. В символической записи это выглядит так: (х)(у)(z) (xRz. yRz..zRx. zRy: ⊃ .x =y).

Связывая понятие коррелятивного отношения с отношением частичной упорядоченности, мы скажем, что коррелятивным отношением является такое отношение частичной упорядоченности, которое интранзитивно. Вопрос о том, является ли оно рефлексивным, требует особого рассмотрения. Дело в том, что коррелятивное отношение является пропорциональным, как это заметил еще Трубецкой; это свойство позволяет трактовать его как класс пар элементов {a>i; b>j}, причем «пара» употребляется здесь в логическом смысле [Quinе 1940: 198 ff.], т. е. как элемент. Это значит, что строевыми элементами фонологической структуры являются не столько фонемы, сколько оппозиции. Такой взгляд может быть обоснован и с точки зрения нейтрализации. Как известно, в фонологии принято называть нейтрализуемыми лишь корреляции; нейтрализация есть такая операция, которая ставит в соответствие двум коррелирующим фонемам некий третий элемент, именуемый архифонемой. Таким образом, имеется некоторое множество архифонем, представляющих собой элементы, каждому из которых взаимно-однозначно соответствует элемент из множества фонем – фонемная пара. Рассмотрение корреляций как фонемных пар отражено, например, в книге С. К. Шаумяна [Шаумян 1962а]. Но если допустить, что корреляция есть логическая пара, то необходимо распространить на корреляции основное свойство пары – некоммутативность: (a>i; b>j) ≠ (b>j; a>i). Отсюда следует невозможность равенства a R b = b R a, т. е. невозможность говорить о рефлексивности как свойстве корреляции. Это равенство справедливо лишь в том случае, когда в правой части имеется отношение , т. е. инверсное но отношению к R. Но такое условие предполагает двойственность (внутреннюю бинарность) коррелятивного отношения; в самом деле, если R – звонкость, то /b/ R /p/ /p/ R /b/, поскольку только /b/ находится в отношении звонкости к /p/, а /p/ находится в отношении глухости к /b/.

Так мы вновь приходим к бинеме: ведь отношение > в строгом смысле есть отношение «< или >» («меньше или больше»), т. е. логическая сумма полярных элементов. Следовательно, чтобы коррелятивное отношение R было рефлексивным, оно должно рассматриваться как бинема, т. е. оператор, задающий некоторый класс пар. Наличие такого отношения между элементами будем называть корреляцией и записывать а ⊢⊣ b.

Считая бинему логическим отношением, т. е. классом пар фонем, мы естественно приходим к выводу, что бинема «существует только как терм отношения» и не больше [Jakоbsоn 1962: 642]. Уже в 1939 г. было отмечено, что ни одна фонема не несет в себе никакой предиктабельной информации о ее оппозите – эта роль принадлежит дифференциальным признакам [Jakоbsоn 1962]. Между тем до появления последних работ Якобсона было принято считать, по традиции пражцев, что термами оппозиции являются сами фонемы. Однако достаточно представить коррелирующие фонемы в дифференциальной записи, чтобы убедиться, что различие реализуется в некоторых элементах