Среди ранних приобретений детского разума огромную ценность представляет, конечно, язык: его словарный фонд и грамматика. Но не меньшую ценность имеет умение логически правильно мыслить. Незаметно и быстро оно усваивается в детстве.
Ребенок может сказать: «У тебя большой шар, а у меня красный», «Принеси мне коробочку точно такой величины, но чтоб была побольше» и т. п. Но постепенно его мышление становится все более упорядоченным и последовательным.
Слова складываются во фразы, фразы начинают связываться между собой так, что становится невозможным, приняв одни, не принять другие. Период «детской логики» заканчивается, ребенок начинает рассуждать «как взрослый». Усвоение языка оказывается одновременно и усвоением общечеловеческой, не зависящей от конкретных языков логики. Без нее, как и без грамматики, нет, в сущности, владения языком.
В дальнейшем стихийно сложившееся знание грамматики систематизируется и шлифуется в процессе школьного обучения. На логику же специального внимания не обращается, ее совершенствование остается стихийным процессом. Нет поэтому ничего странного в том, что, научившись на практике последовательно и доказательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяснить, какая логическая ошибка допущена. Это под силу только теории логики.
4. Развитие современной логики
Современная логика отличается от традиционной логики методом построением специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленности и логической неясности естественного языка. Новые методы дают логике такие преимущества, как большая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов. Многие из проблем, исследуемых в математической логике вообще невозможно сформулировать с использованием только традиционных методов. Современную логику иногда называют также «символической» или «математической».
Название «символическая логика» указывает на особенность применяемых логикой искусственных языков. Слова обычного языка заменяются в них специальными символами. Введение формализованного символического языка означает принятие особой теории логического анализа рассуждений.
Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако в символической логике в использовании символики сделан качественно новый шаг: ее языки содержат только специальные символы.
Имя «математическая логика» призвано подчеркнуть сходство методов, применяемых в современной логике, с методами математики. В настоящее время имена «математическая логика» и «символическая логика» постепенно становятся все менее употребительными.
В середине XIX века ирландский математик Д. Буль истолковал умозаключение как результат решения логических равенств. В результате теория умозаключения приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. С работ немецкого логика Г. Фреге начинается применение логики для исследования оснований математики. Значительный вклад в развитие логики в дальнейшем внесли английские философы и логики Б. Рассел, А. Н. Уайтхед, немецкий математик Д. Гильберт и др. В 30-е годы фундаментальные результаты получили К. Гёдель, А. Тарский, А. Чёрч.
В классических, сложившихся первыми, разделах современной логики многое было отражением определенного своеобразия математического рассуждения. Кроме того, связь по преимуществу с одной наукой, математикой, поддерживала иллюзию, будто логика движется в силу только внутренних импульсов и ее развитие совершенно не зависит от эволюции теоретического мышления и не является в каком-либо смысле отображением последней.