) и легкую континентальную (2500–2700 кг/м>3). В геологии их также именуют «темной» и «светлой» – по цвету основных породообразующих минералов. Океаническая кора по большей части состоит из темно-зеленых и иссиня-черных минералов, богатых магнием, железом и кремнием, – пироксенов (Ca,Na,Mg,Fe>2+)(Mg,Fe>3+,Al)Si>2O>6, оливинов (Mg,Fe)>2SiO>4, основных плагиоклазов (Na,Ca,)Al(Si,Al)Si>2O>8, а континентальная – из серых, белых и красноватых кремний- и алюминийсодержащих силикатов (таких как кварц – SiO>2, калиевый полевой шпат – KAlSi>3O>8, альбитовый плагиоклаз – NaAlSi>3O>8). Отсюда и другое название этих главных минеральных комплексов: мафический (аббревиатура от лат. magnesium – магний, ferrum – железо и суффикс ic) и фельзитовый (от лат. ferrum – железо, alumen – квасцы, silex – кремень и тот же суффикс). Анализ распределения этих минералов в магматических источниках, земных слоях разного возраста и космических телах, включая астероиды, показывает, что «темная материя» здесь первична, а «светлая» – результат ее дифференциации, преобразования в недрах и на поверхности Земли.

Сами по себе ни минералы, ни состоящие из них горные породы, ни земная кора, которая из них, в свою очередь, построена, превращаться во что-то другое не будут: нужно либо отправить их обратно в недра на переплавку, либо изменить состав на поверхности. Первичная коматиит-магнезиально-базальтовая протокора, которая, вероятно, существовала 4,4 млрд лет назад, мало отличалась по составу от морских базальтов. Это и были базальты, только формировались они при более высоких температурах, чем современные, поскольку мантия в хадейском и архейском эонах была горячее. Из протокоры образовывались небольшие острова, которые хаотически перемещались конвекционными мантийными потоками и буквально таяли в них. Но если все слои земной коры были до поры до времени – до начала архейского эона – по составу, физическим и химическим свойствам почти одинаковыми, то можно ли заставить их погружаться и всплывать относительно друг друга? Тем более что главная фельзитовая порода – гранит – термодинамически несовместима с ультрамафическими мантийными минералами и не может напрямую выплавиться из последних, а слишком горячая мантия препятствует субдукции.

Оказывается, все-таки можно. В чем принципиальная разница Земли и несколько уступающего ей по размеру Марса? Не только в том, что на Голубой планете плиты движутся, а на Красной – нет, и даже не в наличии Мирового океана на первой из них и «Мировой суши» – на второй, но и в том, что на Земле открыто примерно 5000 разных минералов, а на Марсе – почти на порядок меньше. Про Луну и говорить нечего – их там около 150. Причем появление двух третей земных минералов (3000) прямо или косвенно связано с наличием на ней жизни. Жизнь – архейские бактериальные сообщества – и запустила, по сути, тектонику плит современного типа.

Во-первых, в поисках пропитания – необходимых микроэлементов и электронов – для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. χηλή – раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы – следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического углерода – керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe