2-49. Уберите как можно меньше спичек так, чтобы оставшиеся спички образовали 4 равносторонних треугольника, таких же размеров, как и 8 треугольников в исходной конфигурации, и нигде не торчали свободные концы.



2-50. Уберите 5 спичек так, чтобы осталось только 3 квадрата.



2-51. Уберите 2 спички так, чтобы осталось только 4 квадрата.



2-52. Из 18 спичек, составляющих 6 равных квадратов, отнимите 2 спички так, чтобы осталось 4 таких же квадрата.



2-53. Из 18 спичек составьте:

а) пять квадратов;

б) один треугольник и 6 четырёхугольников по 3 двух разных размеров.


2-54. Из 18 спичек составьте шесть равных четырёхугольников и один треугольник, в два раза меньший по площади.


2-55. В фигуре, изображенной на рисунке:



а) убрать 5 спичек так, чтобы осталось 5 треугольников (два решения);

б) переложить 6 спичек так, чтобы получилась фигура, составленная из 6 симметрично расположенных равных четырёхугольников.


2-56. Переложите 7 спичек так, чтобы получилось 4 квадрата.



2-57. От 7 квадратов, которые образуют крест и составлены из 22 спичек, отнимите 6 спичек так, чтобы осталось 4 таких же одинаковых квадрата.



2-58. В изображенной фигуре, переложите 2 спички так, чтобы получилось 7 равных квадратов; затем, из полученной фигуры, уберите 2 спички так, чтобы осталось 5 квадратов.



2-59. В фигуре, состоящей из 22 спичек:



а) убрать 4 спички так, чтобы образовалось 5 равных или 5 неравных квадратов;

б) убрать 6 спичек так, чтобы осталось 4 равных квадрата;

в) убрать 7 спичек так, чтобы осталось 4 равных квадрата.


2-60. Представьте себе, что на рисунке изображен остров, окруженный каналом. Ширина канала как раз равна длине одной спички, так что перебросить мостик через канал с помощью одной спички нельзя: невозможно опереться концами о берег канала. Попробуйте построить мост через канал с помощью 2 спичек, не склеивая и не связывая их концы.



2-61. Уберите 4 спички так, чтобы оставшиеся спички образовали 5 квадратов, причём квадраты могут быть и не одинаковой величины.



2-62. Уберите 3 спички так, чтобы оставшиеся образовывали 5 одинаковых квадратов.



2-63. Переложите 16 спичек так, чтобы образовалось 4 маленьких квадрата в одном большом.



2-64. Из 24 спичек сложена фигура, для которой придумано много задач:



а) переложите 12 спичек так, чтобы образовалось 2 равных квадрата;

б) уберите 3 спички так, чтобы осталось 7 равных квадратов;

в) уберите 4 спички так, чтобы оставшиеся образовали один большой и 4 маленьких квадрата;

г) уберите 4 спички так, чтобы оставшиеся образовали один большой и 3 маленьких квадрата;

д) образуйте 5 равных квадратов, убирая : -4 спички; -6 спичек; -8 спичек;

е) уберите 5 спичек так, чтобы осталось 6 равных квадратов;

ж) уберите 6 спичек так, чтобы получилось 2 квадрата и 2 равных неправильных шестиугольника;

з) уберите 6 спичек так, чтобы из оставшихся образовалось 3 квадрата;

и) уберите 6 спичек так, чтобы из оставшихся образовалось 4 различных по величине квадрата;

к) уберите 8 спичек так, чтобы осталось только 2 квадрата (два решения);

л) уберите 8 спичек так, чтобы осталось 3 квадрата;

м) уберите 8 спичек так, чтобы осталось 4 равных квадрата (два решения).


2-65. Сколько одинаковых квадратов можно сложить из 24 спичек, не ломая их и используя при этом все спички?

А сколько квадратов можно образовать из 24 спичек, если считать при этом ещё дополнительные квадраты других размеров?


2-66. Убрать 10 спичек так, чтобы образовалось 4 равных квадрата. (Есть несколько различных решений).



2-67. Уберите 17 спичек так, чтобы осталось ровно 5 треугольников.



2-68. Экономный фермер для своих 16 коров соорудил треугольные загоны, используя 30 звеньев ограды (рис. предыдущей задачи).